(*<*)+ −
theory Paper+ −
imports "Quotient"+ −
"LaTeXsugar"+ −
"../Nominal/FSet"+ −
begin+ −
+ −
notation (latex output)+ −
rel_conj ("_ OOO _" [53, 53] 52)+ −
and+ −
fun_map ("_ ---> _" [51, 51] 50)+ −
and+ −
fun_rel ("_ ===> _" [51, 51] 50)+ −
and+ −
list_eq (infix "\<approx>" 50) (* Not sure if we want this notation...? *)+ −
+ −
ML {*+ −
fun nth_conj n (_, r) = nth (HOLogic.dest_conj r) n;+ −
fun style_lhs_rhs proj = Scan.succeed (fn ctxt => fn t =>+ −
let+ −
val concl =+ −
Object_Logic.drop_judgment (ProofContext.theory_of ctxt) (Logic.strip_imp_concl t)+ −
in+ −
case concl of (_ $ l $ r) => proj (l, r)+ −
| _ => error ("Binary operator expected in term: " ^ Syntax.string_of_term ctxt concl)+ −
end);+ −
*}+ −
setup {*+ −
Term_Style.setup "rhs1" (style_lhs_rhs (nth_conj 0)) #>+ −
Term_Style.setup "rhs2" (style_lhs_rhs (nth_conj 1)) #>+ −
Term_Style.setup "rhs3" (style_lhs_rhs (nth_conj 2))+ −
*}+ −
(*>*)+ −
+ −
section {* Introduction *}+ −
+ −
text {* + −
{\hfill quote by Larry}\bigskip+ −
+ −
\noindent+ −
Isabelle is a generic theorem prover in which many logics can be implemented. + −
The most widely used one, however, is+ −
Higher-Order Logic (HOL). This logic consists of a small number of + −
axioms and inference+ −
rules over a simply-typed term-language. Safe reasoning in HOL is ensured by two very restricted + −
mechanisms for extending the logic: one is the definition of new constants+ −
in terms of existing ones; the other is the introduction of new types+ −
by identifying non-empty subsets in existing types. It is well understood + −
to use both mechanism for dealing with quotient constructions in HOL (cite Larry).+ −
For example the integers in Isabelle/HOL are constructed by a quotient construction over + −
the type @{typ "nat \<times> nat"} and the equivalence relation+ −
+ −
% I would avoid substraction for natural numbers.+ −
+ −
@{text [display] "(n\<^isub>1, n\<^isub>2) \<approx> (m\<^isub>1, m\<^isub>2) \<equiv> n\<^isub>1 - n \<^isub>2 = m\<^isub>1 - m \<^isub>2"}+ −
+ −
\noindent+ −
Similarly one can construct the type of finite sets by quotienting lists+ −
according to the equivalence relation+ −
+ −
@{text [display] "xs \<approx> ys \<equiv> (\<forall>x. x \<in> xs \<longleftrightarrow> x \<in> ys)"}+ −
+ −
\noindent+ −
where @{text "\<in>"} stands for membership in a list.+ −
+ −
The problem is that in order to start reasoning about, for example integers, + −
definitions and theorems need to be transferred, or \emph{lifted}, + −
from the ``raw'' type @{typ "nat \<times> nat"} to the quotient type @{typ int}. + −
This lifting usually requires a lot of tedious reasoning effort.+ −
The purpose of a \emph{quotient package} is to ease the lifting and automate+ −
the reasoning involved as much as possible. Such a package is a central+ −
component of the new version of Nominal Isabelle where representations + −
of alpha-equated terms are constructed according to specifications given by+ −
the user. + −
+ −
In the context of HOL, there have been several quotient packages (...). The+ −
most notable is the one by Homeier (...) implemented in HOL4. However, what is+ −
surprising, none of them can deal compositions of quotients, for example with + −
lifting theorems about @{text "concat"}:+ −
+ −
@{thm [display] concat.simps(1)}+ −
@{thm [display] concat.simps(2)[no_vars]}+ −
+ −
\noindent+ −
One would like to lift this definition to the operation:+ −
+ −
@{thm [display] fconcat_empty[no_vars]}+ −
@{thm [display] fconcat_insert[no_vars]}+ −
+ −
\noindent+ −
What is special about this operation is that we have as input+ −
lists of lists which after lifting turn into finite sets of finite+ −
sets.+ −
*}+ −
+ −
subsection {* Contributions *}+ −
+ −
text {*+ −
We present the detailed lifting procedure, which was not shown before.+ −
+ −
The quotient package presented in this paper has the following+ −
advantages over existing packages:+ −
\begin{itemize}+ −
+ −
\item We define quotient composition, function map composition and+ −
relation map composition. This lets lifting polymorphic types with+ −
subtypes quotiented as well. We extend the notions of+ −
respectfulness and preservation to cope with quotient+ −
composition.+ −
+ −
\item We allow lifting only some occurrences of quotiented+ −
types. Rsp/Prs extended. (used in nominal)+ −
+ −
\item The quotient package is very modular. Definitions can be added+ −
separately, rsp and prs can be proved separately and theorems can+ −
be lifted on a need basis. (useful with type-classes). + −
+ −
\item Can be used both manually (attribute, separate tactics,+ −
rsp/prs databases) and programatically (automated definition of+ −
lifted constants, the rsp proof obligations and theorem statement+ −
translation according to given quotients).+ −
+ −
\end{itemize}+ −
*}+ −
+ −
section {* Quotient Type*}+ −
+ −
+ −
+ −
text {*+ −
In this section we present the definitions of a quotient that follow+ −
those by Homeier, the proofs can be found there.+ −
+ −
\begin{definition}[Quotient]+ −
A relation $R$ with an abstraction function $Abs$+ −
and a representation function $Rep$ is a \emph{quotient}+ −
if and only if:+ −
+ −
\begin{enumerate}+ −
\item @{thm (rhs1) Quotient_def[of "R", no_vars]}+ −
\item @{thm (rhs2) Quotient_def[of "R", no_vars]}+ −
\item @{thm (rhs3) Quotient_def[of "R", no_vars]}+ −
\end{enumerate}+ −
+ −
\end{definition}+ −
+ −
\begin{definition}[Relation map and function map]\\+ −
@{thm fun_rel_def[of "R1" "R2", no_vars]}\\+ −
@{thm fun_map_def[no_vars]}+ −
\end{definition}+ −
+ −
The main theorems for building higher order quotients is:+ −
\begin{lemma}[Function Quotient]+ −
If @{thm (prem 1) fun_quotient[no_vars]} and @{thm (prem 2) fun_quotient[no_vars]}+ −
then @{thm (concl) fun_quotient[no_vars]}+ −
\end{lemma}+ −
+ −
*}+ −
+ −
section {* Constants *}+ −
+ −
(* Say more about containers? *)+ −
+ −
text {*+ −
+ −
To define a constant on the lifted type, an aggregate abstraction+ −
function is applied to the raw constant. Below we describe the operation+ −
that generates+ −
an aggregate @{term "Abs"} or @{term "Rep"} function given the+ −
compound raw type and the compound quotient type.+ −
This operation will also be used in translations of theorem statements+ −
and in the lifting procedure.+ −
+ −
The operation is additionally able to descend into types for which+ −
maps are known. Such maps for most common types (list, pair, sum,+ −
option, \ldots) are described in Homeier, and our algorithm uses the+ −
same kind of maps. Given the raw compound type and the quotient compound+ −
type the Rep/Abs algorithm does:+ −
+ −
\begin{itemize}+ −
\item For equal types or free type variables return identity.+ −
+ −
\item For function types recurse, change the Rep/Abs flag to+ −
the opposite one for the domain type and compose the+ −
results with @{term "fun_map"}.+ −
+ −
\item For equal type constructors use the appropriate map function+ −
applied to the results for the arguments.+ −
+ −
\item For unequal type constructors, look in the quotients information+ −
for a quotient type that matches the type constructor, and instantiate+ −
the raw type+ −
appropriately getting back an instantiation environment. We apply+ −
the environment to the arguments and recurse composing it with the+ −
aggregate map function.+ −
\end{itemize}+ −
+ −
The first three points above are identical to the algorithm present in+ −
in Homeier's HOL implementation, below is the definition of @{term fconcat}+ −
that shows the last step:+ −
+ −
@{thm fconcat_def[no_vars]}+ −
+ −
The aggregate @{term Abs} function takes a finite set of finite sets+ −
and applies @{term "map rep_fset"} composed with @{term rep_fset} to+ −
its input, obtaining a list of lists, passes the result to @{term concat}+ −
obtaining a list and applies @{term abs_fset} obtaining the composed+ −
finite set.+ −
*}+ −
+ −
subsection {* Respectfulness *}+ −
+ −
text {*+ −
+ −
A respectfulness lemma for a constant states that the equivalence+ −
class returned by this constant depends only on the equivalence+ −
classes of the arguments applied to the constant. This can be+ −
expressed in terms of an aggregate relation between the constant+ −
and itself, for example the respectfullness for @{term "append"}+ −
can be stated as:+ −
+ −
@{thm [display] append_rsp[no_vars]}+ −
+ −
\noindent+ −
Which is equivalent to:+ −
+ −
@{thm [display] append_rsp_unfolded[no_vars]}+ −
+ −
Below we show the algorithm for finding the aggregate relation.+ −
This algorithm uses+ −
the relation composition which we define as:+ −
+ −
\begin{definition}[Composition of Relations]+ −
@{abbrev "rel_conj R1 R2"} where @{text OO} is the predicate+ −
composition @{thm pred_compI[no_vars]}+ −
\end{definition}+ −
+ −
Given an aggregate raw type and quotient type:+ −
+ −
\begin{itemize}+ −
\item For equal types or free type variables return equality+ −
+ −
\item For equal type constructors use the appropriate rel+ −
function applied to the results for the argument pairs+ −
+ −
\item For unequal type constructors, look in the quotients information+ −
for a quotient type that matches the type constructor, and instantiate+ −
the type appropriately getting back an instantiation environment. We+ −
apply the environment to the arguments and recurse composing it with+ −
the aggregate relation function.+ −
+ −
\end{itemize}+ −
+ −
Again, the the behaviour of our algorithm in the last situation is+ −
novel, so lets look at the example of respectfullness for @{term concat}.+ −
The statement as computed by the algorithm above is:+ −
+ −
@{thm [display] concat_rsp[no_vars]}+ −
+ −
\noindent+ −
By unfolding the definition of relation composition and relation map+ −
we can see the equivalent statement just using the primitive list+ −
equivalence relation:+ −
+ −
@{thm [display] concat_rsp_unfolded[of "a" "a'" "b'" "b", no_vars]}+ −
+ −
The statement reads that, for any lists of lists @{term a} and @{term b}+ −
if there exist intermediate lists of lists @{term "a'"} and @{term "b'"}+ −
such that each element of @{term a} is in the relation with an appropriate+ −
element of @{term a'}, @{term a'} is in relation with @{term b'} and each+ −
element of @{term b'} is in relation with the appropriate element of+ −
@{term b}.+ −
+ −
*}+ −
+ −
subsection {* Preservation *}+ −
+ −
text {*+ −
To be able to lift theorems that talk about constants that are not+ −
lifted but whose type changes when lifting is performed additionally+ −
preservation theorems are needed.+ −
*}+ −
+ −
subsection {* Composition of Quotient theorems *}+ −
+ −
text {*+ −
Given two quotients, one of which quotients a container, and the+ −
other quotients the type in the container, we can write the+ −
composition of those quotients. To compose two quotient theorems+ −
we compose the relations with relation composition+ −
and the abstraction and relation functions with function composition.+ −
The @{term "Rep"} and @{term "Abs"} functions that we obtain are+ −
the same as the ones created by in the aggregate functions and the+ −
relation is the same as the one given by aggregate relations.+ −
This becomes especially interesting+ −
when we compose the quotient with itself, as there is no simple+ −
intermediate step.+ −
+ −
Lets take again the example of @{term concat}. To be able to lift+ −
theorems that talk about it we will first prove the composition+ −
quotient theorems, which then lets us perform the lifting procedure+ −
in an unchanged way:+ −
+ −
@{thm [display] quotient_compose_list[no_vars]}+ −
*}+ −
+ −
+ −
section {* Lifting Theorems *}+ −
+ −
+ −
+ −
text {* TBD *}+ −
+ −
text {* Why providing a statement to prove is necessary is some cases *}+ −
+ −
subsection {* Regularization *}+ −
+ −
text {*+ −
Transformation of the theorem statement:+ −
\begin{itemize}+ −
\item Quantifiers and abstractions involving raw types replaced by bounded ones.+ −
\item Equalities involving raw types replaced by bounded ones.+ −
\end{itemize}+ −
+ −
The procedure.+ −
+ −
Example of non-regularizable theorem ($0 = 1$).+ −
+ −
Separtion of regularization from injection thanks to the following 2 lemmas:+ −
\begin{lemma}+ −
If @{term R2} is an equivalence relation, then:+ −
\begin{eqnarray}+ −
@{thm (rhs) ball_reg_eqv_range[no_vars]} & = & @{thm (lhs) ball_reg_eqv_range[no_vars]}\\+ −
@{thm (rhs) bex_reg_eqv_range[no_vars]} & = & @{thm (lhs) bex_reg_eqv_range[no_vars]}+ −
\end{eqnarray}+ −
\end{lemma}+ −
+ −
*}+ −
+ −
subsection {* Injection *}+ −
+ −
subsection {* Cleaning *}+ −
+ −
text {* Preservation of quantifiers, abstractions, relations, quotient-constants+ −
(definitions) and user given constant preservation lemmas *}+ −
+ −
section {* Examples *}+ −
+ −
section {* Related Work *}+ −
+ −
text {*+ −
\begin{itemize}+ −
+ −
\item Peter Homeier's package~\cite{Homeier05} (and related work from there)+ −
\item John Harrison's one~\cite{harrison-thesis} is the first one to lift theorems+ −
but only first order.+ −
+ −
\item PVS~\cite{PVS:Interpretations}+ −
\item MetaPRL~\cite{Nogin02}+ −
\item Manually defined quotients in Isabelle/HOL Library (Markus's Quotient\_Type,+ −
Dixon's FSet, \ldots)+ −
+ −
\item Oscar Slotosch defines quotient-type automatically but no+ −
lifting~\cite{Slotosch97}.+ −
+ −
\item PER. And how to avoid it.+ −
+ −
\item Necessity of Hilbert Choice op and Larry's quotients~\cite{Paulson06}+ −
+ −
\item Setoids in Coq and \cite{ChicliPS02}+ −
+ −
\end{itemize}+ −
*}+ −
+ −
(*<*)+ −
end+ −
(*>*)+ −