The alpha-equivalence relation for let-rec. Not sure if correct...
(* Title: HOL/Nominal/nominal_thmdecls.ML
Author: Julien Narboux, TU Muenchen
Author: Christian Urban, TU Muenchen
Infrastructure for the lemma collection "eqvts".
By attaching [eqvt] or [eqvt_force] to a lemma, it will get stored in
a data-slot in the context. Possible modifiers are [... add] and
[... del] for adding and deleting, respectively, the lemma from the
data-slot.
*)
signature NOMINAL_THMDECLS =
sig
val eqvt_add: attribute
val eqvt_del: attribute
val eqvt_force_add: attribute
val eqvt_force_del: attribute
val setup: theory -> theory
val get_eqvt_thms: Proof.context -> thm list
end;
structure NominalThmDecls: NOMINAL_THMDECLS =
struct
structure Data = Generic_Data
(
type T = thm list
val empty = []
val extend = I
val merge = Thm.merge_thms
)
(* Exception for when a theorem does not conform with form of an equivariance lemma. *)
(* There are two forms: one is an implication (for relations) and the other is an *)
(* equality (for functions). In the implication-case, say P ==> Q, Q must be equal *)
(* to P except that every free variable of Q, say x, is replaced by pi o x. In the *)
(* equality case, say lhs = rhs, the lhs must be of the form pi o t and the rhs must *)
(* be equal to t except that every free variable, say x, is replaced by pi o x. In *)
(* the implicational case it is also checked that the variables and permutation fit *)
(* together, i.e. are of the right "pt_class", so that a stronger version of the *)
(* equality-lemma can be derived. *)
exception EQVT_FORM of string
val perm_boolE =
@{lemma "pi \<bullet> P ==> P" by (simp add: permute_bool_def)};
val perm_boolI =
@{lemma "P ==> pi \<bullet> P" by (simp add: permute_bool_def)};
fun prove_eqvt_tac ctxt orig_thm pi pi' =
let
val mypi = Thm.cterm_of ctxt pi
val T = fastype_of pi'
val mypifree = Thm.cterm_of ctxt (Const (@{const_name "uminus"}, T --> T) $ pi')
val perm_pi_simp = @{thms permute_minus_cancel}
in
EVERY1 [rtac @{thm iffI},
dtac perm_boolE,
etac orig_thm,
dtac (Drule.cterm_instantiate [(mypi, mypifree)] orig_thm),
rtac perm_boolI,
full_simp_tac (HOL_basic_ss addsimps perm_pi_simp)]
end;
fun get_derived_thm ctxt hyp concl orig_thm pi =
let
val thy = ProofContext.theory_of ctxt;
val pi' = Var (pi, @{typ "perm"});
val lhs = Const (@{const_name "permute"}, @{typ "perm"} --> HOLogic.boolT --> HOLogic.boolT) $ pi' $ hyp;
val ([goal_term, pi''], ctxt') = Variable.import_terms false
[HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, concl)), pi'] ctxt
in
Goal.prove ctxt' [] [] goal_term
(fn _ => prove_eqvt_tac thy orig_thm pi' pi'') |>
singleton (ProofContext.export ctxt' ctxt)
end
(* replaces in t every variable, say x, with pi o x *)
fun apply_pi trm pi =
let
fun replace n ty =
let
val c = Const (@{const_name "permute"}, @{typ "perm"} --> ty --> ty)
val v1 = Var (pi, @{typ "perm"})
val v2 = Var (n, ty)
in
c $ v1 $ v2
end
in
map_aterms (fn Var (n, ty) => replace n ty | t => t) trm
end
(* returns *the* pi which is in front of all variables, provided there *)
(* exists such a pi; otherwise raises EQVT_FORM *)
fun get_pi t thy =
let fun get_pi_aux s =
(case s of
(Const (@{const_name "permute"} ,typrm) $
(Var (pi,_)) $
(Var (n,ty))) =>
if (Sign.of_sort thy (ty, @{sort pt}))
then [pi]
else raise
EQVT_FORM ("Could not find any permutation or an argument is not an instance of pt")
| Abs (_,_,t1) => get_pi_aux t1
| (t1 $ t2) => get_pi_aux t1 @ get_pi_aux t2
| _ => [])
in
(* collect first all pi's in front of variables in t and then use distinct *)
(* to ensure that all pi's must have been the same, i.e. distinct returns *)
(* a singleton-list *)
(case (distinct (op =) (get_pi_aux t)) of
[pi] => pi
| [] => raise EQVT_FORM "No permutations found"
| _ => raise EQVT_FORM "All permutation should be the same")
end;
(* Either adds a theorem (orig_thm) to or deletes one from the equivariance *)
(* lemma list depending on flag. To be added the lemma has to satisfy a *)
(* certain form. *)
fun eqvt_add_del_aux flag orig_thm context =
let
val thy = Context.theory_of context
val thms_to_be_added = (case (prop_of orig_thm) of
(* case: eqvt-lemma is of the implicational form *)
(Const("==>", _) $ (Const ("Trueprop",_) $ hyp) $ (Const ("Trueprop",_) $ concl)) =>
let
val pi = get_pi concl thy
in
if (apply_pi hyp pi = concl)
then
(warning ("equivariance lemma of the relational form");
[orig_thm,
get_derived_thm (Context.proof_of context) hyp concl orig_thm pi])
else raise EQVT_FORM "Type Implication"
end
(* case: eqvt-lemma is of the equational form *)
| (Const (@{const_name "Trueprop"}, _) $ (Const (@{const_name "op ="}, _) $
(Const (@{const_name "permute"},typrm) $ Var (pi, _) $ lhs) $ rhs)) =>
(if (apply_pi lhs pi) = rhs
then [orig_thm]
else raise EQVT_FORM "Type Equality")
| _ => raise EQVT_FORM "Type unknown")
in
fold (fn thm => Data.map (flag thm)) thms_to_be_added context
end
handle EQVT_FORM s =>
error (Display.string_of_thm (Context.proof_of context) orig_thm ^
" does not comply with the form of an equivariance lemma (" ^ s ^").")
val eqvt_add = Thm.declaration_attribute (eqvt_add_del_aux (Thm.add_thm));
val eqvt_del = Thm.declaration_attribute (eqvt_add_del_aux (Thm.del_thm));
val eqvt_force_add = Thm.declaration_attribute (Data.map o Thm.add_thm);
val eqvt_force_del = Thm.declaration_attribute (Data.map o Thm.del_thm);
val get_eqvt_thms = Context.Proof #> Data.get;
val setup =
Attrib.setup @{binding eqvt} (Attrib.add_del eqvt_add eqvt_del)
"equivariance theorem declaration"
#> Attrib.setup @{binding eqvt_force} (Attrib.add_del eqvt_force_add eqvt_force_del)
"equivariance theorem declaration (without checking the form of the lemma)"
#> PureThy.add_thms_dynamic (Binding.name "eqvts", Data.get)
end;