Quotient-Paper/document/root.tex
author Christian Urban <urbanc@in.tum.de>
Sat, 18 Sep 2010 06:09:43 +0800
changeset 2479 a9b6a00b1ba0
parent 2455 0bc1db726f81
child 2527 40187684fc16
permissions -rw-r--r--
updated to Isabelle Sept 16

\documentclass{sig-alternate}
  \pdfpagewidth=8.5truein
  \pdfpageheight=11truein
\usepackage{times}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{pdfsetup}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{stmaryrd}
\usepackage{verbdef}
\usepackage{longtable}
\usepackage{mathpartir}
\newtheorem{definition}{Definition}
\newtheorem{proposition}{Proposition}
\newtheorem{lemma}{Lemma}

\urlstyle{rm}
\isabellestyle{rm}
\renewcommand{\isastyleminor}{\rm}%
\renewcommand{\isastyle}{\normalsize\rm}%
\renewcommand{\isastylescript}{\it}
\def\dn{\,\triangleq\,}
\verbdef\singlearr|---->|
\verbdef\doublearr|===>|
\verbdef\tripple|###|

\renewcommand{\isasymequiv}{$\triangleq$}
\renewcommand{\isasymemptyset}{$\varnothing$}
%%\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
\renewcommand{\isasymUnion}{$\bigcup$}

\newcommand{\isasymsinglearr}{$\mapsto$}
\newcommand{\isasymdoublearr}{$\Mapsto$}
\newcommand{\isasymtripple}{\tripple}

\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}}

\begin{document}

\conferenceinfo{SAC'11}{March 21-25, 2011, TaiChung, Taiwan.}
\CopyrightYear{2011}
\crdata{978-1-4503-0113-8/11/03}

\title{Quotients Revisited for Isabelle/HOL}
%\numberofauthors{2}
%\author{
%\alignauthor
%Cezary Kaliszyk\\
%  \affaddr{University of Tsukuba, Japan}\\
%  \email{kaliszyk@score.cs.tsukuba.ac.jp}
%\alignauthor
%Christian Urban\\
%  \affaddr{Technical University of Munich, Germany}\\
%  \email{urbanc@in.tum.de}
%}

\maketitle

\begin{abstract}
Higher-Order Logic (HOL) is based on a small logic kernel, whose only
mechanism for extension is the introduction of safe definitions and of
non-empty types. Both extensions are often performed in quotient
constructions. To ease the work involved with such quotient constructions, we
re-implemented in the popular Isabelle/HOL theorem prover the quotient 
package by Homeier. In doing so we extended his work in order to deal with 
compositions of quotients and also specified completely the procedure 
of lifting theorems from the raw level to the quotient level.
The importance for theorem proving is that many formal
verifications, in order to be feasible, require a convenient resoning infrastructure 
for quotient constructions.
\end{abstract}

%\category{D.??}{TODO}{TODO}

\keywords{Quotients, Isabelle theorem prover, Higher-Order Logic}

% generated text of all theories
\input{session}

% optional bibliography
\bibliographystyle{abbrv}
\bibliography{root}

\end{document}

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: