theory LetSimple2
imports "../Nominal2"
begin
atom_decl name
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Let as::"assn" t::"trm" binds "bn as" in t
and assn =
Assn "name" "trm"
binder
bn
where
"bn (Assn x t) = [atom x]"
print_theorems
thm bn_raw.simps
thm permute_bn_raw.simps
thm trm_assn.perm_bn_alpha
thm trm_assn.permute_bn
thm trm_assn.fv_defs
thm trm_assn.eq_iff
thm trm_assn.bn_defs
thm trm_assn.bn_inducts
thm trm_assn.perm_simps
thm trm_assn.induct
thm trm_assn.inducts
thm trm_assn.distinct
thm trm_assn.supp
thm trm_assn.fresh
thm trm_assn.exhaust
thm trm_assn.strong_exhaust
thm trm_assn.perm_bn_simps
thm alpha_bn_raw.cases
thm trm_assn.alpha_refl
thm trm_assn.alpha_sym
thm trm_assn.alpha_trans
lemmas alpha_bn_cases[consumes 1] = alpha_bn_raw.cases[quot_lifted]
lemma alpha_bn_refl: "alpha_bn x x"
by(rule trm_assn.alpha_refl)
lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
by (rule trm_assn.alpha_sym)
lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
using trm_assn.alpha_trans by metis
lemma fv_bn_finite[simp]:
"finite (fv_bn as)"
apply(case_tac as rule: trm_assn.exhaust(2))
apply(simp add: trm_assn.supp finite_supp)
done
lemma k: "A \<Longrightarrow> A \<and> A" by blast
section {* definition with helper functions *}
function
apply_assn
where
"apply_assn f (Assn x t) = (f t)"
apply(case_tac x)
apply(simp)
apply(case_tac b rule: trm_assn.exhaust(2))
apply(blast)
apply(simp)
done
termination
by lexicographic_order
function
apply_assn2
where
"apply_assn2 f (Assn x t) = Assn x (f t)"
apply(case_tac x)
apply(simp)
apply(case_tac b rule: trm_assn.exhaust(2))
apply(blast)
apply(simp)
done
termination
by lexicographic_order
lemma [eqvt]:
shows "p \<bullet> (apply_assn f as) = apply_assn (p \<bullet> f) (p \<bullet> as)"
apply(induct f as rule: apply_assn.induct)
apply(simp)
apply(perm_simp)
apply(rule)
done
lemma [eqvt]:
shows "p \<bullet> (apply_assn2 f as) = apply_assn2 (p \<bullet> f) (p \<bullet> as)"
apply(induct f as rule: apply_assn.induct)
apply(simp)
apply(perm_simp)
apply(rule)
done
nominal_primrec
height_trm :: "trm \<Rightarrow> nat"
where
"height_trm (Var x) = 1"
| "height_trm (App l r) = max (height_trm l) (height_trm r)"
| "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)"
apply (simp only: eqvt_def height_trm_graph_def)
apply (rule, perm_simp)
apply(rule)
apply(rule TrueI)
apply (case_tac x rule: trm_assn.exhaust(1))
apply (auto simp add: alpha_bn_refl)[3]
apply (drule_tac x="assn" in meta_spec)
apply (drule_tac x="trm" in meta_spec)
apply(simp add: alpha_bn_refl)
apply(simp_all)[5]
apply(simp)
apply(erule conjE)+
apply(erule alpha_bn_cases)
apply(simp)
apply (subgoal_tac "height_trm_sumC b = height_trm_sumC ba")
apply simp
apply(simp add: trm_assn.bn_defs)
apply(erule_tac c="()" in Abs_lst_fcb2)
apply(simp_all add: pure_fresh fresh_star_def)[3]
apply(simp_all add: eqvt_at_def)
done
(* assn-function prevents automatic discharge
termination by lexicographic_order
*)
nominal_primrec
subst_trm :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_ [_ ::= _]" [90, 90, 90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "(set (bn as)) \<sharp>* (y, s) \<Longrightarrow>
(Let as t)[y ::= s] = Let (apply_assn2 (\<lambda>t. t[y ::=s]) as) (t[y ::= s])"
apply (simp only: eqvt_def subst_trm_graph_def)
apply (rule, perm_simp)
apply(rule)
apply(rule TrueI)
apply(case_tac x)
apply(simp)
apply (rule_tac y="a" and c="(b,c)" in trm_assn.strong_exhaust(1))
apply (auto simp add: alpha_bn_refl)[3]
apply(simp_all)[5]
apply(simp)
apply(erule conjE)+
apply(erule alpha_bn_cases)
apply(simp)
apply(simp add: trm_assn.bn_defs)
apply(erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp add: Abs_fresh_iff fresh_star_def)
apply(simp add: fresh_star_def)
apply(simp_all add: eqvt_at_def perm_supp_eq fresh_star_Pair)[2]
done
section {* direct definitions --- problems *}
lemma cheat: "P" sorry
definition
"eqvt_at_bn f as \<equiv> \<forall>p. (p \<bullet> (f as)) = f (permute_bn p as)"
definition
"alpha_bn_preserve f as \<equiv> \<forall>p. f as = f (permute_bn p as)"
lemma
fixes as::"assn"
assumes "eqvt_at f as"
shows "eqvt_at_bn f as"
using assms
unfolding eqvt_at_bn_def
apply(rule_tac allI)
apply(drule k)
apply(erule conjE)
apply(subst (asm) eqvt_at_def)
apply(simp)
oops
nominal_primrec
<<<<<<< variant A
(invariant "\<lambda>x y. case x of Inl x1 \<Rightarrow> True | Inr x2 \<Rightarrow> alpha_bn_preserve (height_assn2::assn \<Rightarrow> nat) x2")
>>>>>>> variant B
####### Ancestor
(invariant "\<lambda>x y. case x of Inl x1 \<Rightarrow> True | Inr x2 \<Rightarrow> \<forall>p. (permute_bn p x2) = x2 \<longrightarrow> (p \<bullet> y) = y")
======= end
height_trm2 :: "trm \<Rightarrow> nat"
and height_assn2 :: "assn \<Rightarrow> nat"
where
"height_trm2 (Var x) = 1"
| "height_trm2 (App l r) = max (height_trm2 l) (height_trm2 r)"
| "set (bn as) \<sharp>* fv_bn as \<Longrightarrow> height_trm2 (Let as b) = max (height_assn2 as) (height_trm2 b)"
| "height_assn2 (Assn x t) = (height_trm2 t)"
thm height_trm2_height_assn2_graph.intros[no_vars]
thm height_trm2_height_assn2_graph_def
apply (simp only: eqvt_def height_trm2_height_assn2_graph_def)
apply (rule, perm_simp, rule)
-- "invariant"
apply(simp)
<<<<<<< variant A
apply(simp)
apply(simp)
apply(simp)
apply(simp add: alpha_bn_preserve_def)
apply(simp add: height_assn2_def)
apply(simp add: trm_assn.perm_bn_simps)
apply(rule allI)
thm height_trm2_height_assn2_graph.intros[no_vars]
thm height_trm2_height_assn2_sumC_def
apply(rule cheat)
apply -
>>>>>>> variant B
####### Ancestor
apply(simp)
apply(simp)
apply(simp)
apply(rule cheat)
apply -
======= end
--"completeness"
apply (case_tac x)
apply(simp)
apply (rule_tac y="a" and c="a" in trm_assn.strong_exhaust(1))
apply (auto simp add: alpha_bn_refl)[3]
apply (drule_tac x="assn" in meta_spec)
apply (drule_tac x="trm" in meta_spec)
apply(simp add: alpha_bn_refl)
apply(rotate_tac 3)
apply(drule meta_mp)
apply(simp add: fresh_star_def trm_assn.fresh)
apply(simp add: fresh_def)
apply(subst supp_finite_atom_set)
apply(simp)
apply(simp)
apply(simp)
apply (case_tac b rule: trm_assn.exhaust(2))
apply (auto)[1]
apply(simp_all)[7]
prefer 2
apply(simp)
prefer 2
apply(simp)
--"let case"
apply (simp only: meta_eq_to_obj_eq[OF height_trm2_def, symmetric, unfolded fun_eq_iff])
apply (simp only: meta_eq_to_obj_eq[OF height_assn2_def, symmetric, unfolded fun_eq_iff])
apply (subgoal_tac "eqvt_at height_assn2 as")
apply (subgoal_tac "eqvt_at height_assn2 asa")
apply (subgoal_tac "eqvt_at height_trm2 b")
apply (subgoal_tac "eqvt_at height_trm2 ba")
apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inr as)")
apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inr asa)")
apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inl b)")
apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inl ba)")
defer
apply (simp add: eqvt_at_def height_trm2_def)
apply (simp add: eqvt_at_def height_trm2_def)
apply (simp add: eqvt_at_def height_assn2_def)
apply (simp add: eqvt_at_def height_assn2_def)
apply (subgoal_tac "height_assn2 as = height_assn2 asa")
apply (subgoal_tac "height_trm2 b = height_trm2 ba")
apply simp
apply(simp)
apply(erule conjE)+
apply(erule alpha_bn_cases)
apply(simp)
apply(simp add: trm_assn.bn_defs)
apply(erule_tac c="()" in Abs_lst_fcb2)
apply(simp_all add: fresh_star_def pure_fresh)[3]
apply(simp add: eqvt_at_def)
apply(simp add: eqvt_at_def)
apply(drule Inl_inject)
apply(simp (no_asm_use))
apply(clarify)
apply(erule alpha_bn_cases)
apply(simp del: trm_assn.eq_iff)
apply(simp only: trm_assn.bn_defs)
<<<<<<< variant A
apply(erule_tac c="()" in Abs_lst1_fcb2')
apply(simp_all add: fresh_star_def pure_fresh)[3]
apply(simp add: eqvt_at_bn_def)
apply(simp add: trm_assn.perm_bn_simps)
apply(simp add: eqvt_at_bn_def)
apply(simp add: trm_assn.perm_bn_simps)
done
>>>>>>> variant B
apply(erule_tac c="(trm_rawa)" in Abs_lst1_fcb2')
apply(simp_all add: fresh_star_def pure_fresh)[2]
apply(simp add: trm_assn.supp)
apply(simp add: fresh_def)
apply(subst (asm) supp_finite_atom_set)
apply(simp add: finite_supp)
apply(subst (asm) supp_finite_atom_set)
apply(simp add: finite_supp)
apply(simp)
apply(simp add: eqvt_at_def perm_supp_eq)
apply(simp add: eqvt_at_def perm_supp_eq)
done
####### Ancestor
apply(erule_tac c="()" in Abs_lst1_fcb2')
apply(simp_all add: fresh_star_def pure_fresh)[3]
oops
======= end
termination by lexicographic_order
lemma ww1:
shows "finite (fv_trm t)"
and "finite (fv_bn as)"
apply(induct t and as rule: trm_assn.inducts)
apply(simp_all add: trm_assn.fv_defs supp_at_base)
done
text {* works, but only because no recursion in as *}
nominal_primrec (invariant "\<lambda>x (y::atom set). finite y")
frees_set :: "trm \<Rightarrow> atom set"
where
"frees_set (Var x) = {atom x}"
| "frees_set (App t1 t2) = frees_set t1 \<union> frees_set t2"
| "frees_set (Let as t) = (frees_set t) - (set (bn as)) \<union> (fv_bn as)"
apply(simp add: eqvt_def frees_set_graph_def)
apply(rule, perm_simp, rule)
apply(erule frees_set_graph.induct)
apply(auto simp add: ww1)[3]
apply(rule_tac y="x" in trm_assn.exhaust(1))
apply(auto simp add: alpha_bn_refl)[3]
apply(drule_tac x="assn" in meta_spec)
apply(drule_tac x="trm" in meta_spec)
apply(simp add: alpha_bn_refl)
apply(simp_all)[5]
apply(simp)
apply(erule conjE)
apply(erule alpha_bn_cases)
apply(simp add: trm_assn.bn_defs)
apply(simp add: trm_assn.fv_defs)
(* apply(erule_tac c="(trm_rawa)" in Abs_lst1_fcb2) *)
apply(subgoal_tac " frees_set_sumC t - {atom name} = frees_set_sumC ta - {atom namea}")
apply(simp)
apply(erule_tac c="()" in Abs_lst1_fcb2)
apply(simp add: fresh_minus_atom_set)
apply(simp add: fresh_star_def fresh_Unit)
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
done
termination
by lexicographic_order
lemma test:
assumes a: "\<exists>y. f x = Inl y"
shows "(p \<bullet> (Sum_Type.Projl (f x))) = Sum_Type.Projl ((p \<bullet> f) (p \<bullet> x))"
using a
apply clarify
apply(frule_tac p="p" in permute_boolI)
apply(simp (no_asm_use) only: eqvts)
apply(subst (asm) permute_fun_app_eq)
back
apply(simp)
done
nominal_primrec (default "sum_case (\<lambda>x. Inl undefined) (\<lambda>x. Inr undefined)")
subst_trm2 :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_ [_ ::trm2= _]" [90, 90, 90] 90) and
subst_assn2 :: "assn \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> assn" ("_ [_ ::assn2= _]" [90, 90, 90] 90)
where
"(Var x)[y ::trm2= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::trm2= s] = App (t1[y ::trm2= s]) (t2[y ::trm2= s])"
| "(set (bn as)) \<sharp>* (y, s, fv_bn as) \<Longrightarrow> (Let as t)[y ::trm2= s] = Let (ast[y ::assn2= s]) (t[y ::trm2= s])"
| "(Assn x t)[y ::assn2= s] = Assn x (t[y ::trm2= s])"
apply(subgoal_tac "\<And>p x r. subst_trm2_subst_assn2_graph x r \<Longrightarrow> subst_trm2_subst_assn2_graph (p \<bullet> x) (p \<bullet> r)")
apply(simp add: eqvt_def)
apply(rule allI)
apply(simp add: permute_fun_def permute_bool_def)
apply(rule ext)
apply(rule ext)
apply(rule iffI)
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="- p \<bullet> x" in meta_spec)
apply(drule_tac x="- p \<bullet> xa" in meta_spec)
apply(simp)
apply(drule_tac x="-p" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(simp)
--"Eqvt One way"
defer
apply(rule TrueI)
apply(case_tac x)
apply(simp)
apply(case_tac a)
apply(simp)
apply(rule_tac y="aa" and c="(b, c, aa)" in trm_assn.strong_exhaust(1))
apply(blast)+
apply(simp)
apply(drule_tac x="assn" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="trm" in meta_spec)
apply(simp add: trm_assn.alpha_refl)
apply(rotate_tac 5)
apply(drule meta_mp)
apply(simp add: fresh_star_Pair)
apply(simp add: fresh_star_def trm_assn.fresh)
apply(simp add: fresh_def)
apply(subst supp_finite_atom_set)
apply(simp)
apply(simp)
apply(simp)
apply(case_tac b)
apply(simp)
apply(rule_tac y="a" in trm_assn.exhaust(2))
apply(simp)
apply(blast)
--"compatibility"
apply(all_trivials)
apply(simp)
apply(simp)
prefer 2
apply(simp)
apply(drule Inl_inject)
apply(rule arg_cong)
back
apply (simp only: meta_eq_to_obj_eq[OF subst_trm2_def, symmetric, unfolded fun_eq_iff])
apply (simp only: meta_eq_to_obj_eq[OF subst_assn2_def, symmetric, unfolded fun_eq_iff])
apply (subgoal_tac "eqvt_at (\<lambda>ast. subst_assn2 ast ya sa) ast")
apply (subgoal_tac "eqvt_at (\<lambda>asta. subst_assn2 asta ya sa) asta")
apply (subgoal_tac "eqvt_at (\<lambda>t. subst_trm2 t ya sa) t")
apply (subgoal_tac "eqvt_at (\<lambda>ta. subst_trm2 ta ya sa) ta")
apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inr (ast, y, s))")
apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inr (asta, ya, sa))")
apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inl (t, y, s))")
apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inl (ta, ya, sa))")
apply(simp)
(* HERE *)
apply (subgoal_tac "subst_assn2 ast y s= subst_assn2 asta ya sa")
apply (subgoal_tac "subst_trm2 t y s = subst_trm2 ta ya sa")
apply(simp)
apply(simp)
apply(erule_tac conjE)+
apply(erule alpha_bn_cases)
apply(simp add: trm_assn.bn_defs)
apply(rotate_tac 7)
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(erule fresh_eqvt_at)
thm fresh_eqvt_at
apply(simp add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp_all add: fresh_star_def fresh_Pair_elim)[1]
apply(blast)
apply(simp_all)[5]
apply(simp (no_asm_use))
apply(simp)
apply(erule conjE)+
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
end