theory Let
imports "../Nominal2"
begin
atom_decl name
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let as::"assn" t::"trm" bind "bn as" in t
and assn =
ANil
| ACons "name" "trm" "assn"
binder
bn
where
"bn ANil = []"
| "bn (ACons x t as) = (atom x) # (bn as)"
print_theorems
thm trm_assn.fv_defs
thm trm_assn.eq_iff
thm trm_assn.bn_defs
thm trm_assn.bn_inducts
thm trm_assn.perm_simps
thm trm_assn.induct
thm trm_assn.inducts
thm trm_assn.distinct
thm trm_assn.supp
thm trm_assn.fresh
thm trm_assn.exhaust
thm trm_assn.strong_exhaust
lemma bn_inj:
assumes a: "alpha_bn_raw x y"
shows "bn_raw x = bn_raw y \<Longrightarrow> x = y"
using a
apply(induct)
apply(auto)[6]
apply(simp)
apply(simp)
oops
lemma lets_bla:
"x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Let (ACons x (Var y) ANil) (Var x)) \<noteq> (Let (ACons x (Var z) ANil) (Var x))"
by (simp add: trm_assn.eq_iff)
lemma lets_ok:
"(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))"
apply (simp add: trm_assn.eq_iff Abs_eq_iff )
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
apply (simp_all add: alphas atom_eqvt supp_at_base fresh_star_def trm_assn.bn_defs trm_assn.supp)
done
lemma lets_ok3:
"x \<noteq> y \<Longrightarrow>
(Let (ACons x (App (Var y) (Var x)) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq>
(Let (ACons y (App (Var x) (Var y)) (ACons x (Var x) ANil)) (App (Var x) (Var y)))"
apply (simp add: trm_assn.eq_iff)
done
lemma lets_not_ok1:
"x \<noteq> y \<Longrightarrow>
(Let (ACons x (Var x) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq>
(Let (ACons y (Var x) (ACons x (Var y) ANil)) (App (Var x) (Var y)))"
apply (simp add: alphas trm_assn.eq_iff trm_assn.supp fresh_star_def atom_eqvt Abs_eq_iff trm_assn.bn_defs)
done
lemma lets_nok:
"x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
(Let (ACons x (App (Var z) (Var z)) (ACons y (Var z) ANil)) (App (Var x) (Var y))) \<noteq>
(Let (ACons y (Var z) (ACons x (App (Var z) (Var z)) ANil)) (App (Var x) (Var y)))"
apply (simp add: alphas trm_assn.eq_iff fresh_star_def trm_assn.bn_defs Abs_eq_iff trm_assn.supp trm_assn.distinct)
done
lemma
fixes a b c :: name
assumes x: "a \<noteq> c" and y: "b \<noteq> c"
shows "\<exists>p.([atom a], Var c) \<approx>lst (op =) supp p ([atom b], Var c)"
apply (rule_tac x="(a \<leftrightarrow> b)" in exI)
apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt)
by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y)
lemma alpha_bn_refl: "alpha_bn x x"
apply (induct x rule: trm_assn.inducts(2))
apply (rule TrueI)
apply (auto simp add: trm_assn.eq_iff)
done
lemma alpha_bn_inducts_raw:
"\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
\<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
\<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
P3 assn_raw assn_rawa\<rbrakk>
\<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
(ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
by (simp add: permute_pure)
(* TODO: should be provided by nominal *)
lemmas [eqvt] = trm_assn.fv_bn_eqvt
thm Abs_lst_fcb
(*
lemma Abs_lst_fcb2:
fixes as bs :: "'a :: fs"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[ba as]lst. x = [ba bs]lst. y"
and fcb1: "set (ba as) \<sharp>* f as x c"
and fresh1: "set (ba as) \<sharp>* c"
and fresh2: "set (ba bs) \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
by (auto intro: supports_finite simp add: finite_supp)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
fr1: "(q \<bullet> (set (ba as))) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* ([ba as]lst. x)" and
inc: "supp q \<subseteq> (set (ba as)) \<union> q \<bullet> (set (ba as))"
using at_set_avoiding3[where xs="set (ba as)" and c="(x, c, f as x c, f bs y c)"
and x="[ba as]lst. x"] fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = q \<bullet> ([ba as]lst. x)" by simp
also have "\<dots> = [ba as]lst. x"
by (simp only: fr2 perm_supp_eq)
finally have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = [ba bs]lst. y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> (ba as) = r \<bullet> (ba bs)" and
qq3: "supp r \<subseteq> (q \<bullet> (set (ba as))) \<union> set (ba bs)"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have "(set (ba as)) \<sharp>* f as x c" by (rule fcb1)
then have "q \<bullet> ((set (ba as)) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "set (q \<bullet> (ba as)) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "set (r \<bullet> (ba bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2
by simp
then have "r \<bullet> ((set (ba bs)) \<sharp>* f (ba bs) y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "(set (ba bs)) \<sharp>* f (ba bs) y c" by (simp add: permute_bool_def)
have "f (ba as) x c = q \<bullet> (f (ba as) x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> (ba as)) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> (ba bs)) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f (ba bs) y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f (ba bs) y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
*)
nominal_primrec
height_trm :: "trm \<Rightarrow> nat"
and height_assn :: "assn \<Rightarrow> nat"
where
"height_trm (Var x) = 1"
| "height_trm (App l r) = max (height_trm l) (height_trm r)"
| "height_trm (Lam v b) = 1 + (height_trm b)"
| "height_trm (Let as b) = max (height_assn as) (height_trm b)"
| "height_assn ANil = 0"
| "height_assn (ACons v t as) = max (height_trm t) (height_assn as)"
apply (simp only: eqvt_def height_trm_height_assn_graph_def)
apply (rule, perm_simp, rule, rule TrueI)
apply (case_tac x)
apply (case_tac a rule: trm_assn.exhaust(1))
apply (auto)[4]
apply (drule_tac x="assn" in meta_spec)
apply (drule_tac x="trm" in meta_spec)
apply (simp add: alpha_bn_refl)
apply (case_tac b rule: trm_assn.exhaust(2))
apply (auto)[2]
apply(simp_all)
thm trm_assn.perm_bn_alpha trm_assn.permute_bn
apply (erule_tac c="()" in Abs_lst_fcb2)
apply (simp_all add: pure_fresh fresh_star_def)[3]
apply (simp add: eqvt_at_def)
apply (simp add: eqvt_at_def)
apply(erule conjE)
apply (simp add: meta_eq_to_obj_eq[OF height_trm_def, symmetric, unfolded fun_eq_iff])
apply (simp add: meta_eq_to_obj_eq[OF height_assn_def, symmetric, unfolded fun_eq_iff])
apply (subgoal_tac "eqvt_at height_assn as")
apply (subgoal_tac "eqvt_at height_assn asa")
apply (subgoal_tac "eqvt_at height_trm b")
apply (subgoal_tac "eqvt_at height_trm ba")
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr as)")
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr asa)")
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl b)")
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl ba)")
defer
apply (simp add: eqvt_at_def height_trm_def)
apply (simp add: eqvt_at_def height_trm_def)
apply (simp add: eqvt_at_def height_assn_def)
apply (simp add: eqvt_at_def height_assn_def)
apply (subgoal_tac "height_assn as = height_assn asa")
apply (subgoal_tac "height_trm b = height_trm ba")
apply simp
apply (erule_tac c="()" in Abs_lst_fcb2)
apply (simp_all add: pure_fresh fresh_star_def)[3]
apply (simp_all add: eqvt_at_def)[2]
apply (drule_tac c="()" in Abs_lst_fcb2)
apply (simp_all add: pure_fresh fresh_star_def)[3]
apply (simp_all add: eqvt_at_def)[2]
apply(simp add: eqvt_def)
apply(perm_simp)
apply(simp)
apply(simp add: inj_on_def)
apply (rule arg_cong) back
oops
nominal_primrec
subst :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
and substa :: "name \<Rightarrow> trm \<Rightarrow> assn \<Rightarrow> assn"
where
"subst s t (Var x) = (if (s = x) then t else (Var x))"
| "subst s t (App l r) = App (subst s t l) (subst s t r)"
| "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
| "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (substa s t as) (subst s t b)"
| "substa s t ANil = ANil"
| "substa s t (ACons v t' as) = ACons v (subst v t t') as"
(*unfolding eqvt_def subst_substa_graph_def
apply (rule, perm_simp)*)
defer
apply (rule TrueI)
apply (case_tac x)
apply (case_tac a)
apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1))
apply (auto simp add: fresh_star_def)[3]
apply (drule_tac x="assn" in meta_spec)
apply (simp add: Abs1_eq_iff alpha_bn_refl)
apply (case_tac b)
apply (case_tac c rule: trm_assn.exhaust(2))
apply (auto)[2]
apply blast
apply blast
apply auto
apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff])
apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff])
prefer 2
apply (erule_tac Abs_lst_fcb2)
oops
end