moved lemmas from FSet.thy to do with atom to Nominal2_Base, and to do with 'a::at set to Nominal2_Atoms; moved Nominal2_Eqvt.thy one up to be loaded before Nominal2_Atoms
(* Title: Quotient_List.thy Author: Cezary Kaliszyk and Christian Urban*)theory Quotient_Listimports Quotient Quotient_Syntax Listbeginsection {* Quotient infrastructure for the list type. *}fun list_relwhere "list_rel R [] [] = True"| "list_rel R (x#xs) [] = False"| "list_rel R [] (x#xs) = False"| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"declare [[map list = (map, list_rel)]]lemma split_list_all: shows "(\<forall>x. P x) \<longleftrightarrow> P [] \<and> (\<forall>x xs. P (x#xs))" apply(auto) apply(case_tac x) apply(simp_all) donelemma map_id[id_simps]: shows "map id = id" apply(simp add: expand_fun_eq) apply(rule allI) apply(induct_tac x) apply(simp_all) donelemma list_rel_reflp: shows "equivp R \<Longrightarrow> list_rel R xs xs" apply(induct xs) apply(simp_all add: equivp_reflp) donelemma list_rel_symp: assumes a: "equivp R" shows "list_rel R xs ys \<Longrightarrow> list_rel R ys xs" apply(induct xs ys rule: list_induct2') apply(simp_all) apply(rule equivp_symp[OF a]) apply(simp) donelemma list_rel_transp: assumes a: "equivp R" shows "list_rel R xs1 xs2 \<Longrightarrow> list_rel R xs2 xs3 \<Longrightarrow> list_rel R xs1 xs3" apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2') apply(simp_all) apply(case_tac xs3) apply(simp_all) apply(rule equivp_transp[OF a]) apply(auto) donelemma list_equivp[quot_equiv]: assumes a: "equivp R" shows "equivp (list_rel R)" apply(rule equivpI) unfolding reflp_def symp_def transp_def apply(subst split_list_all) apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a]) apply(blast intro: list_rel_symp[OF a]) apply(blast intro: list_rel_transp[OF a]) donelemma list_rel_rel: assumes q: "Quotient R Abs Rep" shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))" apply(induct r s rule: list_induct2') apply(simp_all) using Quotient_rel[OF q] apply(metis) donelemma list_quotient[quot_thm]: assumes q: "Quotient R Abs Rep" shows "Quotient (list_rel R) (map Abs) (map Rep)" unfolding Quotient_def apply(subst split_list_all) apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id) apply(rule conjI) apply(rule allI) apply(induct_tac a) apply(simp) apply(simp) apply(simp add: Quotient_rep_reflp[OF q]) apply(rule allI)+ apply(rule list_rel_rel[OF q]) donelemma cons_prs_aux: assumes q: "Quotient R Abs Rep" shows "(map Abs) ((Rep h) # (map Rep t)) = h # t" by (induct t) (simp_all add: Quotient_abs_rep[OF q])lemma cons_prs[quot_preserve]: assumes q: "Quotient R Abs Rep" shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) (simp)lemma cons_rsp[quot_respect]: assumes q: "Quotient R Abs Rep" shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)" by (auto)lemma nil_prs[quot_preserve]: assumes q: "Quotient R Abs Rep" shows "map Abs [] = []" by simplemma nil_rsp[quot_respect]: assumes q: "Quotient R Abs Rep" shows "list_rel R [] []" by simplemma map_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])lemma map_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) (simp)lemma map_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" apply(simp) apply(rule allI)+ apply(rule impI) apply(rule allI)+ apply (induct_tac xa ya rule: list_induct2') apply simp_all donelemma foldr_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])lemma foldr_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) (simp)lemma foldl_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])lemma foldl_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) (simp)lemma list_rel_empty: shows "list_rel R [] b \<Longrightarrow> length b = 0" by (induct b) (simp_all)lemma list_rel_len: shows "list_rel R a b \<Longrightarrow> length a = length b" apply (induct a arbitrary: b) apply (simp add: list_rel_empty) apply (case_tac b) apply simp_all done(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)lemma foldl_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" apply(auto) apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)") apply simp apply (rule_tac x="xa" in spec) apply (rule_tac x="ya" in spec) apply (rule_tac xs="xb" and ys="yb" in list_induct2) apply (rule list_rel_len) apply (simp_all) donelemma foldr_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr" apply auto apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)") apply simp apply (rule_tac xs="xa" and ys="ya" in list_induct2) apply (rule list_rel_len) apply (simp_all) donelemma list_rel_eq[id_simps]: shows "(list_rel (op =)) = (op =)" unfolding expand_fun_eq apply(rule allI)+ apply(induct_tac x xa rule: list_induct2') apply(simp_all) donelemma list_rel_refl: assumes a: "\<And>x y. R x y = (R x = R y)" shows "list_rel R x x" by (induct x) (auto simp add: a)end