Moved the matches_typ function outside a?d simplified it.
signature QUOTIENT_TERM =
sig
exception LIFT_MATCH of string
datatype flag = absF | repF
val absrep_fun: flag -> Proof.context -> typ * typ -> term
val absrep_fun_chk: flag -> Proof.context -> typ * typ -> term
val equiv_relation: Proof.context -> typ * typ -> term
val equiv_relation_chk: Proof.context -> typ * typ -> term
val regularize_trm: Proof.context -> term * term -> term
val regularize_trm_chk: Proof.context -> term * term -> term
val inj_repabs_trm: Proof.context -> term * term -> term
val inj_repabs_trm_chk: Proof.context -> term * term -> term
end;
structure Quotient_Term: QUOTIENT_TERM =
struct
open Quotient_Info;
exception LIFT_MATCH of string
(*** Aggregate Rep/Abs Function ***)
(* The flag repF is for types in negative position; absF is for types
in positive position. Because of this, function types need to be
treated specially, since there the polarity changes.
*)
datatype flag = absF | repF
fun negF absF = repF
| negF repF = absF
fun is_identity (Const (@{const_name "id"}, _)) = true
| is_identity _ = false
fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
fun mk_fun_compose flag (trm1, trm2) =
case flag of
absF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
| repF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
fun get_mapfun ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("No map function for type " ^ quote s ^ " found.")
val mapfun = #mapfun (maps_lookup thy s) handle NotFound => raise exc
in
Const (mapfun, dummyT)
end
(* makes a Free out of a TVar *)
fun mk_Free (TVar ((x, i), _)) = Free (unprefix "'" x ^ string_of_int i, dummyT)
(* produces an aggregate map function for the
rty-part of a quotient definition; abstracts
over all variables listed in vs (these variables
correspond to the type variables in rty)
for example for: (?'a list * ?'b)
it produces: %a b. prod_map (map a) b
*)
fun mk_mapfun ctxt vs rty =
let
val vs' = map (mk_Free) vs
fun mk_mapfun_aux rty =
case rty of
TVar _ => mk_Free rty
| Type (_, []) => mk_identity rty
| Type (s, tys) => list_comb (get_mapfun ctxt s, map mk_mapfun_aux tys)
| _ => raise LIFT_MATCH ("mk_mapfun (default)")
in
fold_rev Term.lambda vs' (mk_mapfun_aux rty)
end
(* looks up the (varified) rty and qty for
a quotient definition
*)
fun get_rty_qty ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("No quotient type " ^ quote s ^ " found.")
val qdata = (quotdata_lookup thy s) handle NotFound => raise exc
in
(#rtyp qdata, #qtyp qdata)
end
(* takes two type-environments and looks
up in both of them the variable v, which
must be listed in the environment
*)
fun double_lookup rtyenv qtyenv v =
let
val v' = fst (dest_TVar v)
in
(snd (the (Vartab.lookup rtyenv v')), snd (the (Vartab.lookup qtyenv v')))
end
(* matches a type pattern with a type *)
fun match ctxt err ty_pat ty =
let
val thy = ProofContext.theory_of ctxt
in
Sign.typ_match thy (ty_pat, ty) Vartab.empty
handle MATCH_TYPE => err ctxt ty_pat ty
end
(* produces the rep or abs constant for a qty *)
fun absrep_const flag ctxt qty_str =
let
val thy = ProofContext.theory_of ctxt
val qty_name = Long_Name.base_name qty_str
in
case flag of
absF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
| repF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
end
fun absrep_match_err ctxt ty_pat ty =
let
val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
val ty_str = Syntax.string_of_typ ctxt ty
in
raise LIFT_MATCH (space_implode " "
["absrep_fun (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
end
(** generation of an aggregate absrep function **)
(* - In case of equal types we just return the identity.
- In case of TFrees we also return the identity.
- In case of function types we recurse taking
the polarity change into account.
- If the type constructors are equal, we recurse for the
arguments and build the appropriate map function.
- If the type constructors are unequal, there must be an
instance of quotient types:
- we first look up the corresponding rty_pat and qty_pat
from the quotient definition; the arguments of qty_pat
must be some distinct TVars
- we then match the rty_pat with rty and qty_pat with qty;
if matching fails the types do not correspond -> error
- the matching produces two environments; we look up the
assignments for the qty_pat variables and recurse on the
assignments
- we prefix the aggregate map function for the rty_pat,
which is an abstraction over all type variables
- finally we compose the result with the appropriate
absrep function in case at least one argument produced
a non-identity function /
otherwise we just return the appropriate absrep
function
The composition is necessary for types like
('a list) list / ('a foo) foo
The matching is necessary for types like
('a * 'a) list / 'a bar
The test is necessary in order to eliminate superfluous
identity maps.
*)
fun absrep_fun flag ctxt (rty, qty) =
if rty = qty
then mk_identity rty
else
case (rty, qty) of
(Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
let
val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
val arg2 = absrep_fun flag ctxt (ty2, ty2')
in
list_comb (get_mapfun ctxt "fun", [arg1, arg2])
end
| (Type (s, tys), Type (s', tys')) =>
if s = s'
then
let
val args = map (absrep_fun flag ctxt) (tys ~~ tys')
in
list_comb (get_mapfun ctxt s, args)
end
else
let
val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
val rtyenv = match ctxt absrep_match_err rty_pat rty
val qtyenv = match ctxt absrep_match_err qty_pat qty
val args_aux = map (double_lookup rtyenv qtyenv) vs
val args = map (absrep_fun flag ctxt) args_aux
val map_fun = mk_mapfun ctxt vs rty_pat
val result = list_comb (map_fun, args)
in
if forall is_identity args
then absrep_const flag ctxt s'
else mk_fun_compose flag (absrep_const flag ctxt s', result)
end
| (TFree x, TFree x') =>
if x = x'
then mk_identity rty
else raise (LIFT_MATCH "absrep_fun (frees)")
| (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
| _ => raise (LIFT_MATCH "absrep_fun (default)")
fun absrep_fun_chk flag ctxt (rty, qty) =
absrep_fun flag ctxt (rty, qty)
|> Syntax.check_term ctxt
(*** Aggregate Equivalence Relation ***)
(* works very similar to the absrep generation,
except there is no need for polarities
*)
(* instantiates TVars so that the term is of type ty *)
fun force_typ ctxt trm ty =
let
val thy = ProofContext.theory_of ctxt
val trm_ty = fastype_of trm
val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
in
map_types (Envir.subst_type ty_inst) trm
end
fun is_eq (Const (@{const_name "op ="}, _)) = true
| is_eq _ = false
fun mk_rel_compose (trm1, trm2) =
Const (@{const_name "rel_conj"}, dummyT) $ trm1 $ trm2
fun get_relmap ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("get_relmap (no relation map function found for type " ^ s ^ ")")
val relmap = #relmap (maps_lookup thy s) handle NotFound => raise exc
in
Const (relmap, dummyT)
end
fun mk_relmap ctxt vs rty =
let
val vs' = map (mk_Free) vs
fun mk_relmap_aux rty =
case rty of
TVar _ => mk_Free rty
| Type (_, []) => HOLogic.eq_const rty
| Type (s, tys) => list_comb (get_relmap ctxt s, map mk_relmap_aux tys)
| _ => raise LIFT_MATCH ("mk_relmap (default)")
in
fold_rev Term.lambda vs' (mk_relmap_aux rty)
end
fun get_equiv_rel ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("get_quotdata (no quotient found for type " ^ s ^ ")")
in
#equiv_rel (quotdata_lookup thy s) handle NotFound => raise exc
end
fun equiv_match_err ctxt ty_pat ty =
let
val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
val ty_str = Syntax.string_of_typ ctxt ty
in
raise LIFT_MATCH (space_implode " "
["equiv_relation (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
end
(* builds the aggregate equivalence relation
that will be the argument of Respects
*)
fun equiv_relation ctxt (rty, qty) =
if rty = qty
then HOLogic.eq_const rty
else
case (rty, qty) of
(Type (s, tys), Type (s', tys')) =>
if s = s'
then
let
val args = map (equiv_relation ctxt) (tys ~~ tys')
in
list_comb (get_relmap ctxt s, args)
end
else
let
val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
val rtyenv = match ctxt equiv_match_err rty_pat rty
val qtyenv = match ctxt equiv_match_err qty_pat qty
val args_aux = map (double_lookup rtyenv qtyenv) vs
val args = map (equiv_relation ctxt) args_aux
val rel_map = mk_relmap ctxt vs rty_pat
val result = list_comb (rel_map, args)
val eqv_rel = get_equiv_rel ctxt s'
val eqv_rel' = force_typ ctxt eqv_rel ([rty, rty] ---> @{typ bool})
in
if forall is_eq args
then eqv_rel'
else mk_rel_compose (result, eqv_rel')
end
| _ => HOLogic.eq_const rty
fun equiv_relation_chk ctxt (rty, qty) =
equiv_relation ctxt (rty, qty)
|> Syntax.check_term ctxt
(*** Regularization ***)
(* Regularizing an rtrm means:
- Quantifiers over types that need lifting are replaced
by bounded quantifiers, for example:
All P ----> All (Respects R) P
where the aggregate relation R is given by the rty and qty;
- Abstractions over types that need lifting are replaced
by bounded abstractions, for example:
%x. P ----> Ball (Respects R) %x. P
- Equalities over types that need lifting are replaced by
corresponding equivalence relations, for example:
A = B ----> R A B
or
A = B ----> (R ===> R) A B
for more complicated types of A and B
*)
val mk_babs = Const (@{const_name Babs}, dummyT)
val mk_ball = Const (@{const_name Ball}, dummyT)
val mk_bex = Const (@{const_name Bex}, dummyT)
val mk_resp = Const (@{const_name Respects}, dummyT)
(* - applies f to the subterm of an abstraction,
otherwise to the given term,
- used by regularize, therefore abstracted
variables do not have to be treated specially
*)
fun apply_subt f (trm1, trm2) =
case (trm1, trm2) of
(Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
| _ => f (trm1, trm2)
fun relation_error ctxt r1 r2 =
let
val r1s = Syntax.string_of_term ctxt r1
val r2s = Syntax.string_of_term ctxt r2
val r1t = Syntax.string_of_typ ctxt (fastype_of r1)
val r2t = Syntax.string_of_typ ctxt (fastype_of r2)
in
raise LIFT_MATCH ("regularise (relation mismatch)\n[" ^
r1s ^ " :: " ^ r1t ^ "]\n[" ^ r2s ^ " :: " ^ r2t ^ "]")
end
(* the major type of All and Ex quantifiers *)
fun qnt_typ ty = domain_type (domain_type ty)
(* Checks that two types match, for example:
rty -> rty matches qty -> qty *)
fun matches_typ thy T T' =
case (T, T') of
(TFree _, TFree _) => true
| (TVar _, TVar _) => true
| (Type (s, tys), Type (s', tys')) => (
if T = T' then true else
let
val rty = #rtyp (Quotient_Info.quotdata_lookup thy s')
in
if Sign.typ_instance thy (T, rty) then true else false
end
handle Not_found =>
if length tys <> length tys' then false else
(* 'andalso' is buildin syntax so it needs to be expanded *)
fold (fn x => fn y => x andalso y) (map2 (matches_typ thy) tys tys') (s = s')
)
| _ => false
(* produces a regularized version of rtrm
- the result might contain dummyTs
- for regularisation we do not need any
special treatment of bound variables
*)
fun regularize_trm ctxt (rtrm, qtrm) =
case (rtrm, qtrm) of
(Abs (x, ty, t), Abs (_, ty', t')) =>
let
val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
in
if ty = ty' then subtrm
else mk_babs $ (mk_resp $ equiv_relation ctxt (ty, ty')) $ subtrm
end
| (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm ctxt) (t, t')
in
if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
else mk_ball $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm ctxt) (t, t')
in
if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
else mk_bex $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (* equalities need to be replaced by appropriate equivalence relations *)
(Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
if ty = ty' then rtrm
else equiv_relation ctxt (domain_type ty, domain_type ty')
| (* in this case we just check whether the given equivalence relation is correct *)
(rel, Const (@{const_name "op ="}, ty')) =>
let
val rel_ty = fastype_of rel
val rel' = equiv_relation_chk ctxt (domain_type rel_ty, domain_type ty')
in
if rel' aconv rel then rtrm else relation_error ctxt rel rel'
end
| (_, Const _) =>
let
val thy = ProofContext.theory_of ctxt
fun same_const (Const (s, T)) (Const (s', T')) = (s = s') andalso matches_typ thy T T'
| same_const _ _ = false
in
if same_const rtrm qtrm then rtrm
else
let
val qtrm_str = Syntax.string_of_term ctxt qtrm
val exc1 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " not found)")
val exc2 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " mismatch)")
val rtrm' = #rconst (qconsts_lookup thy qtrm) handle NotFound => raise exc1
in
if Pattern.matches thy (rtrm', rtrm)
then rtrm else raise exc2
end
end
| (t1 $ t2, t1' $ t2') =>
(regularize_trm ctxt (t1, t1')) $ (regularize_trm ctxt (t2, t2'))
| (Bound i, Bound i') =>
if i = i' then rtrm
else raise (LIFT_MATCH "regularize (bounds mismatch)")
| _ =>
let
val rtrm_str = Syntax.string_of_term ctxt rtrm
val qtrm_str = Syntax.string_of_term ctxt qtrm
in
raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
end
fun regularize_trm_chk ctxt (rtrm, qtrm) =
regularize_trm ctxt (rtrm, qtrm)
|> Syntax.check_term ctxt
(*** Rep/Abs Injection ***)
(*
Injection of Rep/Abs means:
For abstractions:
* If the type of the abstraction needs lifting, then we add Rep/Abs
around the abstraction; otherwise we leave it unchanged.
For applications:
* If the application involves a bounded quantifier, we recurse on
the second argument. If the application is a bounded abstraction,
we always put an Rep/Abs around it (since bounded abstractions
are assumed to always need lifting). Otherwise we recurse on both
arguments.
For constants:
* If the constant is (op =), we leave it always unchanged.
Otherwise the type of the constant needs lifting, we put
and Rep/Abs around it.
For free variables:
* We put a Rep/Abs around it if the type needs lifting.
Vars case cannot occur.
*)
fun mk_repabs ctxt (T, T') trm =
absrep_fun repF ctxt (T, T') $ (absrep_fun absF ctxt (T, T') $ trm)
fun inj_repabs_err ctxt msg rtrm qtrm =
let
val rtrm_str = Syntax.string_of_term ctxt rtrm
val qtrm_str = Syntax.string_of_term ctxt qtrm
in
raise LIFT_MATCH (space_implode " " [msg, quote rtrm_str, "and", quote qtrm_str])
end
(* bound variables need to be treated properly,
as the type of subterms needs to be calculated *)
fun inj_repabs_trm ctxt (rtrm, qtrm) =
case (rtrm, qtrm) of
(Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
| (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
| (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
in
mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
end
| (Abs (x, T, t), Abs (x', T', t')) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
val (y, s) = Term.dest_abs (x, T, t)
val (_, s') = Term.dest_abs (x', T', t')
val yvar = Free (y, T)
val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
in
if rty = qty then result
else mk_repabs ctxt (rty, qty) result
end
| (t $ s, t' $ s') =>
(inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))
| (Free (_, T), Free (_, T')) =>
if T = T' then rtrm
else mk_repabs ctxt (T, T') rtrm
| (_, Const (@{const_name "op ="}, _)) => rtrm
| (_, Const (_, T')) =>
let
val rty = fastype_of rtrm
in
if rty = T' then rtrm
else mk_repabs ctxt (rty, T') rtrm
end
| _ => inj_repabs_err ctxt "injection (default):" rtrm qtrm
fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
inj_repabs_trm ctxt (rtrm, qtrm)
|> Syntax.check_term ctxt
end; (* structure *)