rhs of alpha_bn, and template for the arguments.
(* Title: Nominal2_Atoms
Authors: Brian Huffman, Christian Urban
Definitions for concrete atom types.
*)
theory Nominal2_Atoms
imports Nominal2_Base
uses ("nominal_atoms.ML")
begin
section {* Concrete atom types *}
text {*
Class @{text at_base} allows types containing multiple sorts of atoms.
Class @{text at} only allows types with a single sort.
*}
class at_base = pt +
fixes atom :: "'a \<Rightarrow> atom"
assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b"
assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)"
class at = at_base +
assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)"
instance at < at_base ..
lemma supp_at_base:
fixes a::"'a::at_base"
shows "supp a = {atom a}"
by (simp add: supp_atom [symmetric] supp_def atom_eqvt)
lemma fresh_at_base:
shows "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b"
unfolding fresh_def by (simp add: supp_at_base)
instance at_base < fs
proof qed (simp add: supp_at_base)
lemma at_base_infinite [simp]:
shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
proof
obtain a :: 'a where "True" by auto
assume "finite ?U"
hence "finite (atom ` ?U)"
by (rule finite_imageI)
then obtain b where b: "b \<notin> atom ` ?U" "sort_of b = sort_of (atom a)"
by (rule obtain_atom)
from b(2) have "b = atom ((atom a \<rightleftharpoons> b) \<bullet> a)"
unfolding atom_eqvt [symmetric]
by (simp add: swap_atom)
hence "b \<in> atom ` ?U" by simp
with b(1) show "False" by simp
qed
lemma swap_at_base_simps [simp]:
fixes x y::"'a::at_base"
shows "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> x = y"
and "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> y = x"
and "atom x \<noteq> a \<Longrightarrow> atom x \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x"
unfolding atom_eq_iff [symmetric]
unfolding atom_eqvt [symmetric]
by simp_all
lemma obtain_at_base:
assumes X: "finite X"
obtains a::"'a::at_base" where "atom a \<notin> X"
proof -
have "inj (atom :: 'a \<Rightarrow> atom)"
by (simp add: inj_on_def)
with X have "finite (atom -` X :: 'a set)"
by (rule finite_vimageI)
with at_base_infinite have "atom -` X \<noteq> (UNIV :: 'a set)"
by auto
then obtain a :: 'a where "atom a \<notin> X"
by auto
thus ?thesis ..
qed
section {* A swapping operation for concrete atoms *}
definition
flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')")
where
"(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)"
lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0"
unfolding flip_def by (rule swap_self)
lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)"
unfolding flip_def by (rule swap_commute)
lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)"
unfolding flip_def by (rule minus_swap)
lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0"
unfolding flip_def by (rule swap_cancel)
lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x"
unfolding permute_plus [symmetric] add_flip_cancel by simp
lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x"
by (simp add: flip_commute)
lemma flip_eqvt:
fixes a b c::"'a::at_base"
shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)"
unfolding flip_def
by (simp add: swap_eqvt atom_eqvt)
lemma flip_at_base_simps [simp]:
shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b"
and "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a"
and "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c"
and "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x"
unfolding flip_def
unfolding atom_eq_iff [symmetric]
unfolding atom_eqvt [symmetric]
by simp_all
text {* the following two lemmas do not hold for at_base,
only for single sort atoms from at *}
lemma permute_flip_at:
fixes a b c::"'a::at"
shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)"
unfolding flip_def
apply (rule atom_eq_iff [THEN iffD1])
apply (subst atom_eqvt [symmetric])
apply (simp add: swap_atom)
done
lemma flip_at_simps [simp]:
fixes a b::"'a::at"
shows "(a \<leftrightarrow> b) \<bullet> a = b"
and "(a \<leftrightarrow> b) \<bullet> b = a"
unfolding permute_flip_at by simp_all
subsection {* Syntax for coercing at-elements to the atom-type *}
(*
syntax
"_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3)
translations
"_atom_constrain a t" => "atom (_constrain a t)"
*)
subsection {* A lemma for proving instances of class @{text at}. *}
setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *}
setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *}
text {*
New atom types are defined as subtypes of @{typ atom}.
*}
lemma exists_eq_simple_sort:
shows "\<exists>a. a \<in> {a. sort_of a = s}"
by (rule_tac x="Atom s 0" in exI, simp)
lemma exists_eq_sort:
shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}"
by (rule_tac x="Atom (sort_fun x) y" in exI, simp)
lemma at_base_class:
fixes sort_fun :: "'b \<Rightarrow>atom_sort"
fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}"
assumes atom_def: "\<And>a. atom a = Rep a"
assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
shows "OFCLASS('a, at_base_class)"
proof
interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type)
have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp
fix a b :: 'a and p p1 p2 :: perm
show "0 \<bullet> a = a"
unfolding permute_def by (simp add: Rep_inverse)
show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
show "atom a = atom b \<longleftrightarrow> a = b"
unfolding atom_def by (simp add: Rep_inject)
show "p \<bullet> atom a = atom (p \<bullet> a)"
unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed
(*
lemma at_class:
fixes s :: atom_sort
fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}"
assumes atom_def: "\<And>a. atom a = Rep a"
assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
shows "OFCLASS('a, at_class)"
proof
interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type)
have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
fix a b :: 'a and p p1 p2 :: perm
show "0 \<bullet> a = a"
unfolding permute_def by (simp add: Rep_inverse)
show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
show "sort_of (atom a) = sort_of (atom b)"
unfolding atom_def by (simp add: sort_of_Rep)
show "atom a = atom b \<longleftrightarrow> a = b"
unfolding atom_def by (simp add: Rep_inject)
show "p \<bullet> atom a = atom (p \<bullet> a)"
unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed
*)
lemma at_class:
fixes s :: atom_sort
fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
assumes type: "type_definition Rep Abs {a. sort_of a = s}"
assumes atom_def: "\<And>a. atom a = Rep a"
assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
shows "OFCLASS('a, at_class)"
proof
interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
fix a b :: 'a and p p1 p2 :: perm
show "0 \<bullet> a = a"
unfolding permute_def by (simp add: Rep_inverse)
show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
show "sort_of (atom a) = sort_of (atom b)"
unfolding atom_def by (simp add: sort_of_Rep)
show "atom a = atom b \<longleftrightarrow> a = b"
unfolding atom_def by (simp add: Rep_inject)
show "p \<bullet> atom a = atom (p \<bullet> a)"
unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed
setup {* Sign.add_const_constraint
(@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *}
setup {* Sign.add_const_constraint
(@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}
section {* Automation for creating concrete atom types *}
text {* at the moment only single-sort concrete atoms are supported *}
use "nominal_atoms.ML"
end