rhs of alpha_bn, and template for the arguments.
theory LFex
imports "Parser"
begin
atom_decl name
atom_decl ident
ML {* restricted_nominal := 2 *}
nominal_datatype kind =
Type
| KPi "ty" n::"name" k::"kind" bind n in k
and ty =
TConst "ident"
| TApp "ty" "trm"
| TPi "ty" n::"name" t::"ty" bind n in t
and trm =
Const "ident"
| Var "name"
| App "trm" "trm"
| Lam "ty" n::"name" t::"trm" bind n in t
lemma supports:
"{} supports Type"
"(supp (atom i)) supports (TConst i)"
"(supp A \<union> supp M) supports (TApp A M)"
"(supp (atom i)) supports (Const i)"
"(supp (atom x)) supports (Var x)"
"(supp M \<union> supp N) supports (App M N)"
"(supp ty \<union> supp (atom na) \<union> supp ki) supports (KPi ty na ki)"
"(supp ty \<union> supp (atom na) \<union> supp ty2) supports (TPi ty na ty2)"
"(supp ty \<union> supp (atom na) \<union> supp trm) supports (Lam ty na trm)"
apply(simp_all add: supports_def fresh_def[symmetric] swap_fresh_fresh kind_ty_trm_perm)
apply(rule_tac [!] allI)+
apply(rule_tac [!] impI)
apply(tactic {* ALLGOALS (REPEAT o etac conjE) *})
apply(simp_all add: fresh_atom)
done
lemma kind_ty_trm_fs:
"finite (supp (x\<Colon>kind)) \<and> finite (supp (y\<Colon>ty)) \<and> finite (supp (z\<Colon>trm))"
apply(induct rule: kind_ty_trm_induct)
apply(tactic {* ALLGOALS (rtac @{thm supports_finite} THEN' resolve_tac @{thms supports}) *})
apply(simp_all add: supp_atom)
done
instance kind and ty and trm :: fs
apply(default)
apply(simp_all only: kind_ty_trm_fs)
done
lemma ex_out:
"(\<exists>x. Z x \<and> Q) = (Q \<and> (\<exists>x. Z x))"
"(\<exists>x. Q \<and> Z x) = (Q \<and> (\<exists>x. Z x))"
"(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
"(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
apply (blast)+
done
lemma Collect_neg_conj: "{x. \<not>(P x \<and> Q x)} = {x. \<not>(P x)} \<union> {x. \<not>(Q x)}"
by (simp add: Collect_imp_eq Collect_neg_eq[symmetric])
lemma supp_eqs:
"supp Type = {}"
"supp rkind = fv_kind rkind \<Longrightarrow> supp (KPi rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)"
"supp (TConst i) = {atom i}"
"supp (TApp A M) = supp A \<union> supp M"
"supp rty2 = fv_ty rty2 \<Longrightarrow> supp (TPi rty1 name rty2) = supp rty1 \<union> supp (Abs {atom name} rty2)"
"supp (Const i) = {atom i}"
"supp (Var x) = {atom x}"
"supp (App M N) = supp M \<union> supp N"
"supp rtrm = fv_trm rtrm \<Longrightarrow> supp (Lam rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)"
apply(simp_all (no_asm) add: supp_def permute_set_eq atom_eqvt kind_ty_trm_perm)
apply(simp_all only: kind_ty_trm_inject Abs_eq_iff alpha_gen)
apply(simp_all only: ex_out)
apply(simp_all only: eqvts[symmetric])
apply(simp_all only: Collect_neg_conj)
apply(simp_all only: supp_at_base[simplified supp_def] Un_commute Un_assoc)
apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric] Un_commute Un_assoc)
apply(simp_all add: Un_left_commute)
done
lemma supp_fv:
"supp t1 = fv_kind t1 \<and> supp t2 = fv_ty t2 \<and> supp t3 = fv_trm t3"
apply(induct rule: kind_ty_trm_induct)
apply(simp_all (no_asm) only: supp_eqs kind_ty_trm_fv)
apply(simp_all)
apply(simp_all add: supp_eqs)
apply(simp_all add: supp_Abs)
done
lemma supp_rkind_rty_rtrm:
"supp Type = {}"
"supp (KPi A x K) = supp A \<union> (supp K - {atom x})"
"supp (TConst i) = {atom i}"
"supp (TApp A M) = supp A \<union> supp M"
"supp (TPi A x B) = supp A \<union> (supp B - {atom x})"
"supp (Const i) = {atom i}"
"supp (Var x) = {atom x}"
"supp (App M N) = supp M \<union> supp N"
"supp (Lam A x M) = supp A \<union> (supp M - {atom x})"
apply (simp_all add: supp_fv kind_ty_trm_fv)
end