Quot/Examples/SigmaEx.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 28 Jan 2010 12:24:49 +0100
changeset 980 9d35c6145dd2
parent 946 46cc6708c3b3
child 1074 7a42cc191111
permissions -rw-r--r--
Renamed Bexeq to Bex1_rel

theory SigmaEx
imports Nominal "../QuotMain" "../QuotList" "../QuotProd"
begin

atom_decl name

datatype robj =
  rVar "name"
| rObj "(string \<times> rmethod) list"
| rInv "robj" "string"
| rUpd "robj" "string" "rmethod"
and rmethod =
  rSig "name" "robj"

inductive
    alpha_obj :: "robj \<Rightarrow> robj \<Rightarrow> bool" ("_ \<approx>o _" [100, 100] 100)
and alpha_method :: "rmethod \<Rightarrow> rmethod \<Rightarrow> bool" ("_ \<approx>m _" [100, 100] 100)
where
  a1: "a = b \<Longrightarrow> (rVar a) \<approx>o (rVar b)"
| a2: "rObj [] \<approx>o rObj []"
| a3: "rObj t1 \<approx>o rObj t2 \<Longrightarrow> m1 \<approx>m r2 \<Longrightarrow> rObj ((l1, m1) # t1) \<approx>o rObj ((l2, m2) # t2)"
| a4: "x \<approx>o y \<Longrightarrow> rInv x l1 \<approx>o rInv y l2"
| a5: "\<exists>pi::name prm. (rfv t - {a} = rfv s - {b} \<and> (rfv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx>o s \<and> (pi \<bullet> a) = b)
       \<Longrightarrow> rSig a t \<approx>m rSig b s"

lemma alpha_equivps:
  shows "equivp alpha_obj"
  and   "equivp alpha_method"
sorry

quotient_type
    obj = robj / alpha_obj
and method = rmethod / alpha_method
  by (auto intro: alpha_equivps)

quotient_definition
  "Var :: name \<Rightarrow> obj"
as
  "rVar"

quotient_definition
  "Obj :: (string \<times> method) list \<Rightarrow> obj"
as
  "rObj"

quotient_definition
  "Inv :: obj \<Rightarrow> string \<Rightarrow> obj"
as
  "rInv"

quotient_definition
  "Upd :: obj \<Rightarrow> string \<Rightarrow> method \<Rightarrow> obj"
as
  "rUpd"

quotient_definition
  "Sig :: name \<Rightarrow> obj \<Rightarrow> method"
as
  "rSig"

overloading
  perm_obj \<equiv> "perm :: 'x prm \<Rightarrow> obj \<Rightarrow> obj" (unchecked)
  perm_method   \<equiv> "perm :: 'x prm \<Rightarrow> method \<Rightarrow> method" (unchecked)
begin

quotient_definition
  "perm_obj :: 'x prm \<Rightarrow> obj \<Rightarrow> obj"
as
  "(perm::'x prm \<Rightarrow> robj \<Rightarrow> robj)"

quotient_definition
  "perm_method :: 'x prm \<Rightarrow> method \<Rightarrow> method"
as
  "(perm::'x prm \<Rightarrow> rmethod \<Rightarrow> rmethod)"

end

lemma tolift:
"\<forall> fvar.
 \<forall> fobj\<in>Respects (op = ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<forall> fnvk\<in>Respects (op = ===> alpha_obj ===> op =).
 \<forall> fupd\<in>Respects (op = ===> op = ===> alpha_obj ===> op = ===> alpha_method ===> op =).
 \<forall> fcns\<in>Respects (op = ===> op = ===> prod_rel (op =) alpha_method ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<forall> fnil.
 \<forall> fpar\<in>Respects (op = ===> op = ===> alpha_method ===> op =).
 \<forall> fsgm\<in>Respects (op = ===> (op = ===> alpha_obj) ===> op =).

 Bex1
   (Respects (prod_rel (alpha_obj ===> op =)
     (prod_rel (list_rel (prod_rel (op =) alpha_method) ===> op =)
       (prod_rel ((prod_rel (op =) alpha_method) ===> op =)
         (alpha_method ===> op =)
       )
     )
   ))
(\<lambda> (hom_o\<Colon>robj \<Rightarrow> 'a, hom_d\<Colon>(char list \<times> rmethod) list \<Rightarrow> 'b, hom_e\<Colon>char list \<times> rmethod \<Rightarrow> 'c, hom_m\<Colon>rmethod \<Rightarrow> 'd).


 (\<forall>x. hom_o (rVar x) = fvar x) \<and>
 (\<forall>d. hom_o (rObj d) = fobj (hom_d d) d) \<and>
 (\<forall>a l. hom_o (rInv a l) = fnvk (hom_o a) a l) \<and>
 (\<forall>a l m. hom_o (rUpd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
 (\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
 (hom_d [] = fnil) \<and>
 (\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
 (\<forall>x a. hom_m (rSig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
sorry

syntax
  "_expttrn"        :: "pttrn => bool => bool"      ("(3\<exists>\<exists> _./ _)" [0, 10] 10)

translations
  "\<exists>\<exists> x. P"   == "Ex (%x. P)"

lemma rvar_rsp[quot_respect]: "(op = ===> alpha_obj) rVar rVar"
  by (simp add: a1)

lemma robj_rsp[quot_respect]: "(list_rel (prod_rel op = alpha_method) ===> alpha_obj) rObj rObj"
sorry
lemma rinv_rsp[quot_respect]: "(alpha_obj ===> op = ===> alpha_obj) rInv rInv"
sorry
lemma rupd_rsp[quot_respect]: "(alpha_obj ===> op = ===> alpha_method ===> alpha_obj) rUpd rUpd"
sorry
lemma rsig_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_method) rSig rSig"
sorry
lemma operm_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_obj) op \<bullet> op \<bullet>"
sorry

  
lemma bex1_bex1reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
apply (simp add: Bex1_def Ex1_def Bex1_rel_def in_respects)
apply clarify
apply auto
apply (rule bexI)
apply assumption
apply (simp add: in_respects)
apply (simp add: in_respects)
apply auto
done

lemma liftd: "
Ex1 (\<lambda>(hom_o, hom_d, hom_e, hom_m).

 (\<forall>x. hom_o (Var x) = fvar x) \<and>
 (\<forall>d. hom_o (Obj d) = fobj (hom_d d) d) \<and>
 (\<forall>a l. hom_o (Inv a l) = fnvk (hom_o a) a l) \<and>
 (\<forall>a l m. hom_o (Upd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
 (\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
 (hom_d [] = fnil) \<and>
 (\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
 (\<forall>x a. hom_m (Sig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
apply (lifting tolift)
done

done

lemma tolift':
"\<forall> fvar.
 \<forall> fobj\<in>Respects (op = ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<forall> fnvk\<in>Respects (op = ===> alpha_obj ===> op =).
 \<forall> fupd\<in>Respects (op = ===> op = ===> alpha_obj ===> op = ===> alpha_method ===> op =).
 \<forall> fcns\<in>Respects (op = ===> op = ===> prod_rel (op =) alpha_method ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<forall> fnil.
 \<forall> fpar\<in>Respects (op = ===> op = ===> alpha_method ===> op =).
 \<forall> fsgm\<in>Respects (op = ===> (op = ===> alpha_obj) ===> op =).

 \<exists> hom_o\<Colon>robj \<Rightarrow> 'a \<in> Respects (alpha_obj ===> op =).
 \<exists> hom_d\<Colon>(char list \<times> rmethod) list \<Rightarrow> 'b \<in> Respects (list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<exists> hom_e\<Colon>char list \<times> rmethod \<Rightarrow> 'c \<in> Respects ((prod_rel (op =) alpha_method) ===> op =).
 \<exists> hom_m\<Colon>rmethod \<Rightarrow> 'd \<in> Respects (alpha_method ===> op =).
(
 (\<forall>x. hom_o (rVar x) = fvar x) \<and>
 (\<forall>d. hom_o (rObj d) = fobj (hom_d d) d) \<and>
 (\<forall>a l. hom_o (rInv a l) = fnvk (hom_o a) a l) \<and>
 (\<forall>a l m. hom_o (rUpd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
 (\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
 (hom_d [] = fnil) \<and>
 (\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
 (\<forall>x a. hom_m (rSig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
sorry

lemma liftd': "
\<exists>hom_o. \<exists>hom_d. \<exists>hom_e. \<exists>hom_m.
(
 (\<forall>x. hom_o (Var x) = fvar x) \<and>
 (\<forall>d. hom_o (Obj d) = fobj (hom_d d) d) \<and>
 (\<forall>a l. hom_o (Inv a l) = fnvk (hom_o a) a l) \<and>
 (\<forall>a l m. hom_o (Upd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
 (\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
 (hom_d [] = fnil) \<and>
 (\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
 (\<forall>x a. hom_m (Sig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
apply (lifting tolift')
done

lemma tolift'':
"\<forall> fvar.
 \<forall> fobj\<in>Respects (op = ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<forall> fnvk\<in>Respects (op = ===> alpha_obj ===> op =).
 \<forall> fupd\<in>Respects (op = ===> op = ===> alpha_obj ===> op = ===> alpha_method ===> op =).
 \<forall> fcns\<in>Respects (op = ===> op = ===> prod_rel (op =) alpha_method ===> list_rel (prod_rel (op =) alpha_method) ===> op =).
 \<forall> fnil.
 \<forall> fpar\<in>Respects (op = ===> op = ===> alpha_method ===> op =).
 \<forall> fsgm\<in>Respects (op = ===> (op = ===> alpha_obj) ===> op =).

 Bex1_rel (alpha_obj ===> op =) (\<lambda>hom_o\<Colon>robj \<Rightarrow> 'a .
 Bex1_rel (list_rel (prod_rel (op =) alpha_method) ===> op =) (\<lambda>hom_d\<Colon>(char list \<times> rmethod) list \<Rightarrow> 'b.
 Bex1_rel ((prod_rel (op =) alpha_method) ===> op =) (\<lambda>hom_e\<Colon>char list \<times> rmethod \<Rightarrow> 'c.
 Bex1_rel (alpha_method ===> op =) (\<lambda>hom_m\<Colon>rmethod \<Rightarrow> 'd.
(
 (\<forall>x. hom_o (rVar x) = fvar x) \<and>
 (\<forall>d. hom_o (rObj d) = fobj (hom_d d) d) \<and>
 (\<forall>a l. hom_o (rInv a l) = fnvk (hom_o a) a l) \<and>
 (\<forall>a l m. hom_o (rUpd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
 (\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
 (hom_d [] = fnil) \<and>
 (\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
 (\<forall>x a. hom_m (rSig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)
))))"
sorry

lemma liftd'': "
\<exists>!hom_o. \<exists>!hom_d. \<exists>!hom_e. \<exists>!hom_m.
(
 (\<forall>x. hom_o (Var x) = fvar x) \<and>
 (\<forall>d. hom_o (Obj d) = fobj (hom_d d) d) \<and>
 (\<forall>a l. hom_o (Inv a l) = fnvk (hom_o a) a l) \<and>
 (\<forall>a l m. hom_o (Upd a l m) = fupd (hom_o a) (hom_m m) a l m) \<and>
 (\<forall>e d. hom_d (e # d) = fcns (hom_e e) (hom_d d) e d) \<and>
 (hom_d [] = fnil) \<and>
 (\<forall>l m. hom_e (l, m) = fpar (hom_m m) l m) \<and>
 (\<forall>x a. hom_m (Sig x a) = fsgm (\<lambda>y. hom_o ([(x, y)] \<bullet> a)) (\<lambda>y. [(x, y)] \<bullet> a))
)"
apply (lifting tolift'')
done


end