Quot/Examples/LarryDatatype.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 28 Jan 2010 12:24:49 +0100
changeset 980 9d35c6145dd2
parent 804 ba7e81531c6d
child 1128 17ca92ab4660
permissions -rw-r--r--
Renamed Bexeq to Bex1_rel

theory LarryDatatype
imports Main "../QuotMain"
begin

subsection{*Defining the Free Algebra*}

datatype
  freemsg = NONCE  nat
        | MPAIR  freemsg freemsg
        | CRYPT  nat freemsg  
        | DECRYPT  nat freemsg

inductive 
  msgrel::"freemsg \<Rightarrow> freemsg \<Rightarrow> bool" (infixl "\<sim>" 50)
where 
  CD:    "CRYPT K (DECRYPT K X) \<sim> X"
| DC:    "DECRYPT K (CRYPT K X) \<sim> X"
| NONCE: "NONCE N \<sim> NONCE N"
| MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"
| CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"
| DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"
| SYM:   "X \<sim> Y \<Longrightarrow> Y \<sim> X"
| TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"

lemmas msgrel.intros[intro]

text{*Proving that it is an equivalence relation*}

lemma msgrel_refl: "X \<sim> X"
by (induct X, (blast intro: msgrel.intros)+)

theorem equiv_msgrel: "equivp msgrel"
proof (rule equivpI)
  show "reflp msgrel" by (simp add: reflp_def msgrel_refl)
  show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM)
  show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS)
qed

subsection{*Some Functions on the Free Algebra*}

subsubsection{*The Set of Nonces*}

fun
  freenonces :: "freemsg \<Rightarrow> nat set"
where
  "freenonces (NONCE N) = {N}"
| "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"
| "freenonces (CRYPT K X) = freenonces X"
| "freenonces (DECRYPT K X) = freenonces X"

theorem msgrel_imp_eq_freenonces: 
  assumes a: "U \<sim> V"
  shows "freenonces U = freenonces V"
  using a by (induct) (auto) 

subsubsection{*The Left Projection*}

text{*A function to return the left part of the top pair in a message.  It will
be lifted to the initial algrebra, to serve as an example of that process.*}
fun
  freeleft :: "freemsg \<Rightarrow> freemsg"
where
  "freeleft (NONCE N) = NONCE N"
| "freeleft (MPAIR X Y) = X"
| "freeleft (CRYPT K X) = freeleft X"
| "freeleft (DECRYPT K X) = freeleft X"

text{*This theorem lets us prove that the left function respects the
equivalence relation.  It also helps us prove that MPair
  (the abstract constructor) is injective*}
lemma msgrel_imp_eqv_freeleft_aux:
  shows "freeleft U \<sim> freeleft U"
  by (induct rule: freeleft.induct) (auto)

theorem msgrel_imp_eqv_freeleft:
  assumes a: "U \<sim> V" 
  shows "freeleft U \<sim> freeleft V"
  using a
  by (induct) (auto intro: msgrel_imp_eqv_freeleft_aux)

subsubsection{*The Right Projection*}

text{*A function to return the right part of the top pair in a message.*}
fun
  freeright :: "freemsg \<Rightarrow> freemsg"
where
  "freeright (NONCE N) = NONCE N"
| "freeright (MPAIR X Y) = Y"
| "freeright (CRYPT K X) = freeright X"
| "freeright (DECRYPT K X) = freeright X"

text{*This theorem lets us prove that the right function respects the
equivalence relation.  It also helps us prove that MPair
  (the abstract constructor) is injective*}
lemma msgrel_imp_eqv_freeright_aux:
  shows "freeright U \<sim> freeright U"
  by (induct rule: freeright.induct) (auto)

theorem msgrel_imp_eqv_freeright:
  assumes a: "U \<sim> V" 
  shows "freeright U \<sim> freeright V"
  using a
  by (induct) (auto intro: msgrel_imp_eqv_freeright_aux)

subsubsection{*The Discriminator for Constructors*}

text{*A function to distinguish nonces, mpairs and encryptions*}
fun 
  freediscrim :: "freemsg \<Rightarrow> int"
where
   "freediscrim (NONCE N) = 0"
 | "freediscrim (MPAIR X Y) = 1"
 | "freediscrim (CRYPT K X) = freediscrim X + 2"
 | "freediscrim (DECRYPT K X) = freediscrim X - 2"

text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}
theorem msgrel_imp_eq_freediscrim:
  assumes a: "U \<sim> V"
  shows "freediscrim U = freediscrim V"
  using a by (induct) (auto)

subsection{*The Initial Algebra: A Quotiented Message Type*}

quotient_type msg = freemsg / msgrel
  by (rule equiv_msgrel)

text{*The abstract message constructors*}

quotient_definition
  "Nonce :: nat \<Rightarrow> msg"
as
  "NONCE"

quotient_definition
  "MPair :: msg \<Rightarrow> msg \<Rightarrow> msg"
as
  "MPAIR"

quotient_definition
  "Crypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
as
  "CRYPT"

quotient_definition
  "Decrypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
as
  "DECRYPT"

lemma [quot_respect]:
  shows "(op = ===> op \<sim> ===> op \<sim>) CRYPT CRYPT"
by (auto intro: CRYPT)

lemma [quot_respect]:
  shows "(op = ===> op \<sim> ===> op \<sim>) DECRYPT DECRYPT"
by (auto intro: DECRYPT)

text{*Establishing these two equations is the point of the whole exercise*}
theorem CD_eq [simp]: 
  shows "Crypt K (Decrypt K X) = X"
  by (lifting CD)

theorem DC_eq [simp]: 
  shows "Decrypt K (Crypt K X) = X"
  by (lifting DC)

subsection{*The Abstract Function to Return the Set of Nonces*}

quotient_definition
   "nonces:: msg \<Rightarrow> nat set"
as
  "freenonces"

text{*Now prove the four equations for @{term nonces}*}

lemma [quot_respect]:
  shows "(op \<sim> ===> op =) freenonces freenonces"
  by (simp add: msgrel_imp_eq_freenonces)

lemma [quot_respect]:
  shows "(op = ===> op \<sim>) NONCE NONCE"
  by (simp add: NONCE)

lemma nonces_Nonce [simp]: 
  shows "nonces (Nonce N) = {N}"
  by (lifting freenonces.simps(1))
 
lemma [quot_respect]:
  shows " (op \<sim> ===> op \<sim> ===> op \<sim>) MPAIR MPAIR"
  by (simp add: MPAIR)

lemma nonces_MPair [simp]: 
  shows "nonces (MPair X Y) = nonces X \<union> nonces Y"
  by (lifting freenonces.simps(2))

lemma nonces_Crypt [simp]: 
  shows "nonces (Crypt K X) = nonces X"
  by (lifting freenonces.simps(3))

lemma nonces_Decrypt [simp]: 
  shows "nonces (Decrypt K X) = nonces X"
  by (lifting freenonces.simps(4))

subsection{*The Abstract Function to Return the Left Part*}

quotient_definition
  "left:: msg \<Rightarrow> msg"
as
  "freeleft"

lemma [quot_respect]:
  shows "(op \<sim> ===> op \<sim>) freeleft freeleft"
  by (simp add: msgrel_imp_eqv_freeleft)

lemma left_Nonce [simp]: 
  shows "left (Nonce N) = Nonce N"
  by (lifting freeleft.simps(1))

lemma left_MPair [simp]: 
  shows "left (MPair X Y) = X"
  by (lifting freeleft.simps(2))

lemma left_Crypt [simp]: 
  shows "left (Crypt K X) = left X"
  by (lifting freeleft.simps(3))

lemma left_Decrypt [simp]: 
  shows "left (Decrypt K X) = left X"
  by (lifting freeleft.simps(4))

subsection{*The Abstract Function to Return the Right Part*}

quotient_definition
  "right:: msg \<Rightarrow> msg"
as
  "freeright"

text{*Now prove the four equations for @{term right}*}

lemma [quot_respect]:
  shows "(op \<sim> ===> op \<sim>) freeright freeright"
  by (simp add: msgrel_imp_eqv_freeright)

lemma right_Nonce [simp]: 
  shows "right (Nonce N) = Nonce N"
  by (lifting freeright.simps(1))

lemma right_MPair [simp]: 
  shows "right (MPair X Y) = Y"
  by (lifting freeright.simps(2))

lemma right_Crypt [simp]: 
  shows "right (Crypt K X) = right X"
  by (lifting freeright.simps(3))

lemma right_Decrypt [simp]: 
  shows "right (Decrypt K X) = right X"
  by (lifting freeright.simps(4))

subsection{*Injectivity Properties of Some Constructors*}

lemma NONCE_imp_eq: 
  shows "NONCE m \<sim> NONCE n \<Longrightarrow> m = n"
  by (drule msgrel_imp_eq_freenonces, simp)

text{*Can also be proved using the function @{term nonces}*}
lemma Nonce_Nonce_eq [iff]: 
  shows "(Nonce m = Nonce n) = (m = n)"
proof
  assume "Nonce m = Nonce n"
  then show "m = n" by (lifting NONCE_imp_eq)
next
  assume "m = n" 
  then show "Nonce m = Nonce n" by simp
qed

lemma MPAIR_imp_eqv_left: 
  shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'"
  by (drule msgrel_imp_eqv_freeleft) (simp)

lemma MPair_imp_eq_left: 
  assumes eq: "MPair X Y = MPair X' Y'" 
  shows "X = X'"
  using eq by (lifting MPAIR_imp_eqv_left)

lemma MPAIR_imp_eqv_right: 
  shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'"
  by (drule msgrel_imp_eqv_freeright) (simp)

lemma MPair_imp_eq_right: 
  shows "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'"
  by (lifting  MPAIR_imp_eqv_right)

theorem MPair_MPair_eq [iff]: 
  shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" 
  by (blast dest: MPair_imp_eq_left MPair_imp_eq_right)

lemma NONCE_neqv_MPAIR: 
  shows "\<not>(NONCE m \<sim> MPAIR X Y)"
  by (auto dest: msgrel_imp_eq_freediscrim)

theorem Nonce_neq_MPair [iff]: 
  shows "Nonce N \<noteq> MPair X Y"
  by (lifting NONCE_neqv_MPAIR)

text{*Example suggested by a referee*}

lemma CRYPT_NONCE_neq_NONCE:
  shows "\<not>(CRYPT K (NONCE M) \<sim> NONCE N)"
  by (auto dest: msgrel_imp_eq_freediscrim)

theorem Crypt_Nonce_neq_Nonce: 
  shows "Crypt K (Nonce M) \<noteq> Nonce N"
  by (lifting CRYPT_NONCE_neq_NONCE)

text{*...and many similar results*}
lemma CRYPT2_NONCE_neq_NONCE: 
  shows "\<not>(CRYPT K (CRYPT K' (NONCE M)) \<sim> NONCE N)"
  by (auto dest: msgrel_imp_eq_freediscrim)  

theorem Crypt2_Nonce_neq_Nonce: 
  shows "Crypt K (Crypt K' (Nonce M)) \<noteq> Nonce N"
  by (lifting CRYPT2_NONCE_neq_NONCE) 

theorem Crypt_Crypt_eq [iff]: 
  shows "(Crypt K X = Crypt K X') = (X=X')" 
proof
  assume "Crypt K X = Crypt K X'"
  hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp
  thus "X = X'" by simp
next
  assume "X = X'"
  thus "Crypt K X = Crypt K X'" by simp
qed

theorem Decrypt_Decrypt_eq [iff]: 
  shows "(Decrypt K X = Decrypt K X') = (X=X')" 
proof
  assume "Decrypt K X = Decrypt K X'"
  hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp
  thus "X = X'" by simp
next
  assume "X = X'"
  thus "Decrypt K X = Decrypt K X'" by simp
qed

lemma msg_induct_aux:
  shows "\<lbrakk>\<And>N. P (Nonce N);
          \<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y);
          \<And>K X. P X \<Longrightarrow> P (Crypt K X);
          \<And>K X. P X \<Longrightarrow> P (Decrypt K X)\<rbrakk> \<Longrightarrow> P msg"
  by (lifting freemsg.induct)

lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]:
  assumes N: "\<And>N. P (Nonce N)"
      and M: "\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y)"
      and C: "\<And>K X. P X \<Longrightarrow> P (Crypt K X)"
      and D: "\<And>K X. P X \<Longrightarrow> P (Decrypt K X)"
  shows "P msg"
  using N M C D by (rule msg_induct_aux)

subsection{*The Abstract Discriminator*}

text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't
need this function in order to prove discrimination theorems.*}

quotient_definition
  "discrim:: msg \<Rightarrow> int"
as
  "freediscrim"

text{*Now prove the four equations for @{term discrim}*}

lemma [quot_respect]:
  shows "(op \<sim> ===> op =) freediscrim freediscrim"
  by (auto simp add: msgrel_imp_eq_freediscrim)

lemma discrim_Nonce [simp]: 
  shows "discrim (Nonce N) = 0"
  by (lifting freediscrim.simps(1))

lemma discrim_MPair [simp]: 
  shows "discrim (MPair X Y) = 1"
  by (lifting freediscrim.simps(2))

lemma discrim_Crypt [simp]: 
  shows "discrim (Crypt K X) = discrim X + 2"
  by (lifting freediscrim.simps(3))

lemma discrim_Decrypt [simp]: 
  shows "discrim (Decrypt K X) = discrim X - 2"
  by (lifting freediscrim.simps(4))

end