theory LarryDatatype
imports Main "../QuotMain"
begin
subsection{*Defining the Free Algebra*}
datatype
freemsg = NONCE nat
| MPAIR freemsg freemsg
| CRYPT nat freemsg
| DECRYPT nat freemsg
inductive
msgrel::"freemsg \<Rightarrow> freemsg \<Rightarrow> bool" (infixl "\<sim>" 50)
where
CD: "CRYPT K (DECRYPT K X) \<sim> X"
| DC: "DECRYPT K (CRYPT K X) \<sim> X"
| NONCE: "NONCE N \<sim> NONCE N"
| MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"
| CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"
| DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"
| SYM: "X \<sim> Y \<Longrightarrow> Y \<sim> X"
| TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
lemmas msgrel.intros[intro]
text{*Proving that it is an equivalence relation*}
lemma msgrel_refl: "X \<sim> X"
by (induct X, (blast intro: msgrel.intros)+)
theorem equiv_msgrel: "equivp msgrel"
proof (rule equivpI)
show "reflp msgrel" by (simp add: reflp_def msgrel_refl)
show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM)
show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS)
qed
subsection{*Some Functions on the Free Algebra*}
subsubsection{*The Set of Nonces*}
fun
freenonces :: "freemsg \<Rightarrow> nat set"
where
"freenonces (NONCE N) = {N}"
| "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"
| "freenonces (CRYPT K X) = freenonces X"
| "freenonces (DECRYPT K X) = freenonces X"
theorem msgrel_imp_eq_freenonces:
assumes a: "U \<sim> V"
shows "freenonces U = freenonces V"
using a by (induct) (auto)
subsubsection{*The Left Projection*}
text{*A function to return the left part of the top pair in a message. It will
be lifted to the initial algrebra, to serve as an example of that process.*}
fun
freeleft :: "freemsg \<Rightarrow> freemsg"
where
"freeleft (NONCE N) = NONCE N"
| "freeleft (MPAIR X Y) = X"
| "freeleft (CRYPT K X) = freeleft X"
| "freeleft (DECRYPT K X) = freeleft X"
text{*This theorem lets us prove that the left function respects the
equivalence relation. It also helps us prove that MPair
(the abstract constructor) is injective*}
lemma msgrel_imp_eqv_freeleft_aux:
shows "freeleft U \<sim> freeleft U"
by (induct rule: freeleft.induct) (auto)
theorem msgrel_imp_eqv_freeleft:
assumes a: "U \<sim> V"
shows "freeleft U \<sim> freeleft V"
using a
by (induct) (auto intro: msgrel_imp_eqv_freeleft_aux)
subsubsection{*The Right Projection*}
text{*A function to return the right part of the top pair in a message.*}
fun
freeright :: "freemsg \<Rightarrow> freemsg"
where
"freeright (NONCE N) = NONCE N"
| "freeright (MPAIR X Y) = Y"
| "freeright (CRYPT K X) = freeright X"
| "freeright (DECRYPT K X) = freeright X"
text{*This theorem lets us prove that the right function respects the
equivalence relation. It also helps us prove that MPair
(the abstract constructor) is injective*}
lemma msgrel_imp_eqv_freeright_aux:
shows "freeright U \<sim> freeright U"
by (induct rule: freeright.induct) (auto)
theorem msgrel_imp_eqv_freeright:
assumes a: "U \<sim> V"
shows "freeright U \<sim> freeright V"
using a
by (induct) (auto intro: msgrel_imp_eqv_freeright_aux)
subsubsection{*The Discriminator for Constructors*}
text{*A function to distinguish nonces, mpairs and encryptions*}
fun
freediscrim :: "freemsg \<Rightarrow> int"
where
"freediscrim (NONCE N) = 0"
| "freediscrim (MPAIR X Y) = 1"
| "freediscrim (CRYPT K X) = freediscrim X + 2"
| "freediscrim (DECRYPT K X) = freediscrim X - 2"
text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}
theorem msgrel_imp_eq_freediscrim:
assumes a: "U \<sim> V"
shows "freediscrim U = freediscrim V"
using a by (induct) (auto)
subsection{*The Initial Algebra: A Quotiented Message Type*}
quotient_type msg = freemsg / msgrel
by (rule equiv_msgrel)
text{*The abstract message constructors*}
quotient_definition
"Nonce :: nat \<Rightarrow> msg"
as
"NONCE"
quotient_definition
"MPair :: msg \<Rightarrow> msg \<Rightarrow> msg"
as
"MPAIR"
quotient_definition
"Crypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
as
"CRYPT"
quotient_definition
"Decrypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
as
"DECRYPT"
lemma [quot_respect]:
shows "(op = ===> op \<sim> ===> op \<sim>) CRYPT CRYPT"
by (auto intro: CRYPT)
lemma [quot_respect]:
shows "(op = ===> op \<sim> ===> op \<sim>) DECRYPT DECRYPT"
by (auto intro: DECRYPT)
text{*Establishing these two equations is the point of the whole exercise*}
theorem CD_eq [simp]:
shows "Crypt K (Decrypt K X) = X"
by (lifting CD)
theorem DC_eq [simp]:
shows "Decrypt K (Crypt K X) = X"
by (lifting DC)
subsection{*The Abstract Function to Return the Set of Nonces*}
quotient_definition
"nonces:: msg \<Rightarrow> nat set"
as
"freenonces"
text{*Now prove the four equations for @{term nonces}*}
lemma [quot_respect]:
shows "(op \<sim> ===> op =) freenonces freenonces"
by (simp add: msgrel_imp_eq_freenonces)
lemma [quot_respect]:
shows "(op = ===> op \<sim>) NONCE NONCE"
by (simp add: NONCE)
lemma nonces_Nonce [simp]:
shows "nonces (Nonce N) = {N}"
by (lifting freenonces.simps(1))
lemma [quot_respect]:
shows " (op \<sim> ===> op \<sim> ===> op \<sim>) MPAIR MPAIR"
by (simp add: MPAIR)
lemma nonces_MPair [simp]:
shows "nonces (MPair X Y) = nonces X \<union> nonces Y"
by (lifting freenonces.simps(2))
lemma nonces_Crypt [simp]:
shows "nonces (Crypt K X) = nonces X"
by (lifting freenonces.simps(3))
lemma nonces_Decrypt [simp]:
shows "nonces (Decrypt K X) = nonces X"
by (lifting freenonces.simps(4))
subsection{*The Abstract Function to Return the Left Part*}
quotient_definition
"left:: msg \<Rightarrow> msg"
as
"freeleft"
lemma [quot_respect]:
shows "(op \<sim> ===> op \<sim>) freeleft freeleft"
by (simp add: msgrel_imp_eqv_freeleft)
lemma left_Nonce [simp]:
shows "left (Nonce N) = Nonce N"
by (lifting freeleft.simps(1))
lemma left_MPair [simp]:
shows "left (MPair X Y) = X"
by (lifting freeleft.simps(2))
lemma left_Crypt [simp]:
shows "left (Crypt K X) = left X"
by (lifting freeleft.simps(3))
lemma left_Decrypt [simp]:
shows "left (Decrypt K X) = left X"
by (lifting freeleft.simps(4))
subsection{*The Abstract Function to Return the Right Part*}
quotient_definition
"right:: msg \<Rightarrow> msg"
as
"freeright"
text{*Now prove the four equations for @{term right}*}
lemma [quot_respect]:
shows "(op \<sim> ===> op \<sim>) freeright freeright"
by (simp add: msgrel_imp_eqv_freeright)
lemma right_Nonce [simp]:
shows "right (Nonce N) = Nonce N"
by (lifting freeright.simps(1))
lemma right_MPair [simp]:
shows "right (MPair X Y) = Y"
by (lifting freeright.simps(2))
lemma right_Crypt [simp]:
shows "right (Crypt K X) = right X"
by (lifting freeright.simps(3))
lemma right_Decrypt [simp]:
shows "right (Decrypt K X) = right X"
by (lifting freeright.simps(4))
subsection{*Injectivity Properties of Some Constructors*}
lemma NONCE_imp_eq:
shows "NONCE m \<sim> NONCE n \<Longrightarrow> m = n"
by (drule msgrel_imp_eq_freenonces, simp)
text{*Can also be proved using the function @{term nonces}*}
lemma Nonce_Nonce_eq [iff]:
shows "(Nonce m = Nonce n) = (m = n)"
proof
assume "Nonce m = Nonce n"
then show "m = n" by (lifting NONCE_imp_eq)
next
assume "m = n"
then show "Nonce m = Nonce n" by simp
qed
lemma MPAIR_imp_eqv_left:
shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'"
by (drule msgrel_imp_eqv_freeleft) (simp)
lemma MPair_imp_eq_left:
assumes eq: "MPair X Y = MPair X' Y'"
shows "X = X'"
using eq by (lifting MPAIR_imp_eqv_left)
lemma MPAIR_imp_eqv_right:
shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'"
by (drule msgrel_imp_eqv_freeright) (simp)
lemma MPair_imp_eq_right:
shows "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'"
by (lifting MPAIR_imp_eqv_right)
theorem MPair_MPair_eq [iff]:
shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')"
by (blast dest: MPair_imp_eq_left MPair_imp_eq_right)
lemma NONCE_neqv_MPAIR:
shows "\<not>(NONCE m \<sim> MPAIR X Y)"
by (auto dest: msgrel_imp_eq_freediscrim)
theorem Nonce_neq_MPair [iff]:
shows "Nonce N \<noteq> MPair X Y"
by (lifting NONCE_neqv_MPAIR)
text{*Example suggested by a referee*}
lemma CRYPT_NONCE_neq_NONCE:
shows "\<not>(CRYPT K (NONCE M) \<sim> NONCE N)"
by (auto dest: msgrel_imp_eq_freediscrim)
theorem Crypt_Nonce_neq_Nonce:
shows "Crypt K (Nonce M) \<noteq> Nonce N"
by (lifting CRYPT_NONCE_neq_NONCE)
text{*...and many similar results*}
lemma CRYPT2_NONCE_neq_NONCE:
shows "\<not>(CRYPT K (CRYPT K' (NONCE M)) \<sim> NONCE N)"
by (auto dest: msgrel_imp_eq_freediscrim)
theorem Crypt2_Nonce_neq_Nonce:
shows "Crypt K (Crypt K' (Nonce M)) \<noteq> Nonce N"
by (lifting CRYPT2_NONCE_neq_NONCE)
theorem Crypt_Crypt_eq [iff]:
shows "(Crypt K X = Crypt K X') = (X=X')"
proof
assume "Crypt K X = Crypt K X'"
hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp
thus "X = X'" by simp
next
assume "X = X'"
thus "Crypt K X = Crypt K X'" by simp
qed
theorem Decrypt_Decrypt_eq [iff]:
shows "(Decrypt K X = Decrypt K X') = (X=X')"
proof
assume "Decrypt K X = Decrypt K X'"
hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp
thus "X = X'" by simp
next
assume "X = X'"
thus "Decrypt K X = Decrypt K X'" by simp
qed
lemma msg_induct_aux:
shows "\<lbrakk>\<And>N. P (Nonce N);
\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y);
\<And>K X. P X \<Longrightarrow> P (Crypt K X);
\<And>K X. P X \<Longrightarrow> P (Decrypt K X)\<rbrakk> \<Longrightarrow> P msg"
by (lifting freemsg.induct)
lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]:
assumes N: "\<And>N. P (Nonce N)"
and M: "\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y)"
and C: "\<And>K X. P X \<Longrightarrow> P (Crypt K X)"
and D: "\<And>K X. P X \<Longrightarrow> P (Decrypt K X)"
shows "P msg"
using N M C D by (rule msg_induct_aux)
subsection{*The Abstract Discriminator*}
text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't
need this function in order to prove discrimination theorems.*}
quotient_definition
"discrim:: msg \<Rightarrow> int"
as
"freediscrim"
text{*Now prove the four equations for @{term discrim}*}
lemma [quot_respect]:
shows "(op \<sim> ===> op =) freediscrim freediscrim"
by (auto simp add: msgrel_imp_eq_freediscrim)
lemma discrim_Nonce [simp]:
shows "discrim (Nonce N) = 0"
by (lifting freediscrim.simps(1))
lemma discrim_MPair [simp]:
shows "discrim (MPair X Y) = 1"
by (lifting freediscrim.simps(2))
lemma discrim_Crypt [simp]:
shows "discrim (Crypt K X) = discrim X + 2"
by (lifting freediscrim.simps(3))
lemma discrim_Decrypt [simp]:
shows "discrim (Decrypt K X) = discrim X - 2"
by (lifting freediscrim.simps(4))
end