Nominal/Perm.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 28 Apr 2010 07:20:57 +0200
changeset 1969 9ae5380c828a
parent 1966 b6b3374a402d
child 1971 8daf6ff5e11a
permissions -rw-r--r--
white spaces

theory Perm
imports "../Nominal-General/Nominal2_Atoms"
begin

(* definitions of the permute function for raw nominal datatypes *)


ML {*
(* returns the type of the nth datatype *)
fun nth_dtyp dt_descr sorts i = 
  Datatype_Aux.typ_of_dtyp dt_descr sorts (Datatype_Aux.DtRec i);
*}

ML {*
(* generates for every datatype a name str ^ dt_name *)
fun prefix_dt_names dt_descr sorts str = 
let
  fun get_nth_name (i, _) = 
    Datatype_Aux.name_of_typ (nth_dtyp dt_descr sorts i) 
in
  Datatype_Prop.indexify_names 
    (map (prefix str o get_nth_name) dt_descr)
end
*}


ML {*
(* permutation function for one argument 
   
    - in case the argument is recursive it returns 

         permute_fn p arg

    - in case the argument is non-recursive it will build

         p o arg

*)
fun perm_arg permute_fns pi (arg_dty, arg) =
  if Datatype_Aux.is_rec_type arg_dty 
  then Free (nth permute_fns (Datatype_Aux.body_index arg_dty)) $ pi $ arg
  else mk_perm pi arg
*}

ML {*
(* equation for permutation function for one constructor;
   i is the index of the correspodning datatype *)
fun perm_eq_constr dt_descr sorts permute_fns i (cnstr_name, dts) =
let
  val pi = Free ("p", @{typ perm})
  val arg_tys = map (Datatype_Aux.typ_of_dtyp dt_descr sorts) dts
  val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
  val args = map Free (arg_names ~~ arg_tys)
  val cnstr = Const (cnstr_name, arg_tys ---> (nth_dtyp dt_descr sorts i))
  val lhs = Free (nth permute_fns i) $ pi $ list_comb (cnstr, args)
  val rhs = list_comb (cnstr, map (perm_arg permute_fns pi) (dts ~~ args))
  val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
in
  (Attrib.empty_binding, eq)
end
*}

ML {*
fun prove_permute_zero lthy induct perm_defs perm_fns =
let
  val perm_types = map (body_type o fastype_of) perm_fns
  val perm_indnames = Datatype_Prop.make_tnames perm_types
  
  fun single_goal ((perm_fn, T), x) =
    HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))

  val goals =
    HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
      (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))

  val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)

  val tac = (Datatype_Aux.indtac induct perm_indnames 
             THEN_ALL_NEW asm_simp_tac simps) 1
in
  Goal.prove lthy perm_indnames [] goals (K tac)
  |> Datatype_Aux.split_conj_thm
end
*}

ML {*
fun prove_permute_plus lthy induct perm_defs perm_fns =
let
  val pi1 = Free ("p", @{typ perm})
  val pi2 = Free ("q", @{typ perm})
  val perm_types = map (body_type o fastype_of) perm_fns
  val perm_indnames = Datatype_Prop.make_tnames perm_types
  
  fun single_goal ((perm, T), x) = HOLogic.mk_eq 
      (perm $ (mk_plus pi1 pi2) $ Free (x, T), perm $ pi1 $ (perm $ pi2 $ Free (x, T)))

  val goals =
    HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
      (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))

  val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)

  val tac = (Datatype_Aux.indtac induct perm_indnames
             THEN_ALL_NEW asm_simp_tac simps) 1
in
  Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
  |> Datatype_Aux.split_conj_thm 
end
*}

ML {*
(* defines the permutation functions for raw datatypes and
   proves that they are instances of pt

   dt_nos refers to the number of "un-unfolded" datatypes
   given by the user
*)
fun define_raw_perms (dt_info : Datatype_Aux.info) dt_nos thy =
let
  val {descr as dt_descr, induct, sorts, ...} = dt_info;
  val all_full_tnames = map (fn (_, (n, _, _)) => n) dt_descr;
  val full_tnames = List.take (all_full_tnames, dt_nos);

  val perm_fn_names = prefix_dt_names dt_descr sorts "permute_"

  val perm_types = map (fn (i, _) => perm_ty (nth_dtyp dt_descr sorts i)) dt_descr

  val permute_fns = perm_fn_names ~~ perm_types

  fun perm_eq (i, (_, _, constrs)) = 
    map (perm_eq_constr dt_descr sorts permute_fns i) constrs;

  val perm_eqs = maps perm_eq dt_descr;

  val lthy =
    Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
   
  val ((perm_fns, perm_ldef), lthy') =
    Primrec.add_primrec
      (map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names) perm_eqs lthy;
    
  val perm_zero_thms = prove_permute_zero lthy' induct perm_ldef perm_fns
  val perm_plus_thms = prove_permute_plus lthy' induct perm_ldef perm_fns
  val perm_zero_thms' = List.take (perm_zero_thms, dt_nos);
  val perm_plus_thms' = List.take (perm_plus_thms, dt_nos)
  val perms_name = space_implode "_" perm_fn_names
  val perms_zero_bind = Binding.name (perms_name ^ "_zero")
  val perms_plus_bind = Binding.name (perms_name ^ "_plus")
  
  fun tac _ (_, simps, _) =
    Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
  
  fun morphism phi (dfs, simps, fvs) =
    (map (Morphism.thm phi) dfs, map (Morphism.thm phi) simps, map (Morphism.term phi) fvs);
in
  lthy'
  |> snd o (Local_Theory.note ((perms_zero_bind, []), perm_zero_thms'))
  |> snd o (Local_Theory.note ((perms_plus_bind, []), perm_plus_thms'))
  |> Class_Target.prove_instantiation_exit_result morphism tac 
       (perm_ldef, perm_zero_thms' @ perm_plus_thms', perm_fns)
end
*}

(* permutations for quotient types *)

ML {*
fun quotient_lift_consts_export qtys spec ctxt =
let
  val (result, ctxt') = fold_map (Quotient_Def.quotient_lift_const qtys) spec ctxt;
  val (ts_loc, defs_loc) = split_list result;
  val morphism = ProofContext.export_morphism ctxt' ctxt;
  val ts = map (Morphism.term morphism) ts_loc
  val defs = Morphism.fact morphism defs_loc
in
  (ts, defs, ctxt')
end
*}

ML {*
fun define_lifted_perms qtys full_tnames name_term_pairs thms thy =
let
  val lthy =
    Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
  val (_, _, lthy') = quotient_lift_consts_export qtys name_term_pairs lthy;
  val lifted_thms = map (Quotient_Tacs.lifted qtys lthy') thms;
  fun tac _ =
    Class.intro_classes_tac [] THEN
    (ALLGOALS (resolve_tac lifted_thms))
  val lthy'' = Class.prove_instantiation_instance tac lthy'
in
  Local_Theory.exit_global lthy''
end
*}

ML {*
fun neq_to_rel r neq =
let
  val neq = HOLogic.dest_Trueprop (prop_of neq)
  val eq = HOLogic.dest_not neq
  val (lhs, rhs) = HOLogic.dest_eq eq
  val rel = r $ lhs $ rhs
  val nrel = HOLogic.mk_not rel
in
  HOLogic.mk_Trueprop nrel
end
*}

ML {*
fun neq_to_rel_tac cases distinct =
  rtac notI THEN' eresolve_tac cases THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct)
*}

ML {*
fun distinct_rel ctxt cases (dists, rel) =
let
  val ((_, thms), ctxt') = Variable.import false dists ctxt
  val terms = map (neq_to_rel rel) thms
  val nrels = map (fn t => Goal.prove ctxt' [] [] t (fn _ => neq_to_rel_tac cases dists 1)) terms
in
  Variable.export ctxt' ctxt nrels
end
*}



(* Test *)
(*
atom_decl name

datatype trm =
  Var "name"
| App "trm" "(trm list) list"
| Lam "name" "trm"
| Let "bp" "trm" "trm"
and bp =
  BUnit
| BVar "name"
| BPair "bp" "bp"

setup {* fn thy =>
let 
  val info = Datatype.the_info thy "Perm.trm"
in
  define_raw_perms info 2 thy |> snd
end
*}

print_theorems
*)

end