proved that generalisation is closed under substitution
(* Theory be Kirstin Peters *)theory Pi imports "../Nominal2"beginatom_decl namesubsection {* Capture-Avoiding Substitution of Names *}definition subst_name :: "name \<Rightarrow> name \<Rightarrow> name \<Rightarrow> name" ("_[_:::=_]" [110, 110, 110] 110)where "a[b:::=c] \<equiv> if (a = b) then c else a"declare subst_name_def[simp]lemma subst_name_mix_eqvt[eqvt]: fixes p :: perm and a :: name and b :: name and c :: name shows "p \<bullet> (a[b:::=c]) = (p \<bullet> a)[(p \<bullet> b):::=(p \<bullet> c)]"proof - show ?thesis by(auto)qednominal_primrec subst_name_list :: "name \<Rightarrow> (name \<times> name) list \<Rightarrow> name"where "subst_name_list a [] = a"| "subst_name_list a ((b, c)#xs) = (if (a = b) then c else (subst_name_list a xs))" apply(auto) apply(subgoal_tac "\<And>p x r. subst_name_list_graph x r \<Longrightarrow> subst_name_list_graph (p \<bullet> x) (p \<bullet> r)") unfolding eqvt_def apply(rule allI) apply(simp add: permute_fun_def) apply(rule ext) apply(rule ext) apply(simp add: permute_bool_def) apply(rule iffI) apply(drule_tac x="p" in meta_spec) apply(drule_tac x="- p \<bullet> x" in meta_spec) apply(drule_tac x="- p \<bullet> xa" in meta_spec) apply(simp) apply(drule_tac x="-p" in meta_spec) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="xa" in meta_spec) apply(simp) apply(erule subst_name_list_graph.induct) apply(perm_simp) apply(rule subst_name_list_graph.intros) apply(perm_simp) apply(rule subst_name_list_graph.intros) apply(simp) apply(rule_tac y="b" in list.exhaust) by(auto)termination (eqvt) by (lexicographic_order)section {* The Synchronous Pi-Calculus *}subsection {* Syntax: Synchronous, Monadic Pi-Calculus with n-ary, Mixed Choice *}nominal_datatype guardedTerm_mix = Output name name piMix ("_!<_>\<onesuperior>._" [120, 120, 110] 110) | Input name b::name P::piMix binds b in P ("_?<_>\<onesuperior>._" [120, 120, 110] 110) | Tau piMix ("<\<tau>\<onesuperior>>._" [110] 110) and sumList_mix = SumNil ("\<zero>\<onesuperior>") | AddSummand guardedTerm_mix sumList_mix (infixr "\<oplus>\<onesuperior>" 65) and piMix = Res a::name P::piMix binds a in P ("<\<nu>_>\<onesuperior>_" [100, 100] 100) | Par piMix piMix (infixr "\<parallel>\<onesuperior>" 85) | Match name name piMix ("[_\<frown>\<onesuperior>_]_" [120, 120, 110] 110) | Sum sumList_mix ("\<oplus>\<onesuperior>{_}" 90) | Rep name b::name P::piMix binds b in P ("\<infinity>_?<_>\<onesuperior>._" [120, 120, 110] 110) | Succ ("succ\<onesuperior>")lemmas piMix_strong_induct = guardedTerm_mix_sumList_mix_piMix.strong_inductlemmas piMix_fresh = guardedTerm_mix_sumList_mix_piMix.freshlemmas piMix_eq_iff = guardedTerm_mix_sumList_mix_piMix.eq_ifflemmas piMix_distinct = guardedTerm_mix_sumList_mix_piMix.distinctlemmas piMix_size = guardedTerm_mix_sumList_mix_piMix.sizesubsection {* Alpha-Conversion Lemmata *}lemma alphaRes_mix: fixes a :: name and P :: piMix and z :: name assumes "atom z \<sharp> P" shows "<\<nu>a>\<onesuperior>P = <\<nu>z>\<onesuperior>((atom a \<rightleftharpoons> atom z) \<bullet> P)"proof(cases "a = z") assume "a = z" thus ?thesis by(simp)next assume "a \<noteq> z" thus ?thesis using assms by(simp add: piMix_eq_iff Abs1_eq_iff fresh_permute_left)qedlemma alphaInput_mix: fixes a :: name and b :: name and P :: piMix and z :: name assumes "atom z \<sharp> P" shows "a?<b>\<onesuperior>.P = a?<z>\<onesuperior>.((atom b \<rightleftharpoons> atom z) \<bullet> P)"proof(cases "b = z") assume "b = z" thus ?thesis by(simp)next assume "b \<noteq> z" thus ?thesis using assms by(simp add: piMix_eq_iff Abs1_eq_iff fresh_permute_left)qedlemma alphaRep_mix: fixes a :: name and b :: name and P :: piMix and z :: name assumes "atom z \<sharp> P" shows "\<infinity>a?<b>\<onesuperior>.P = \<infinity>a?<z>\<onesuperior>.((atom b \<rightleftharpoons> atom z) \<bullet> P)"proof(cases "b = z") assume "b = z" thus ?thesis by(simp)next assume "b \<noteq> z" thus ?thesis using assms by(simp add: piMix_eq_iff Abs1_eq_iff fresh_permute_left)qedsubsection {* Capture-Avoiding Substitution of Names *}lemma testl: assumes a: "\<exists>y. f = Inl y" shows "(p \<bullet> (Sum_Type.Projl f)) = Sum_Type.Projl (p \<bullet> f)"using a by autolemma testrr: assumes a: "\<exists>y. f = Inr (Inr y)" shows "(p \<bullet> (Sum_Type.Projr (Sum_Type.Projr f))) = Sum_Type.Projr (Sum_Type.Projr (p \<bullet> f))"using a by autolemma testlr: assumes a: "\<exists>y. f = Inr (Inl y)" shows "(p \<bullet> (Sum_Type.Projl (Sum_Type.Projr f))) = Sum_Type.Projl (Sum_Type.Projr (p \<bullet> f))"using a by autonominal_primrec (default "sum_case (\<lambda>x. Inl undefined) (sum_case (\<lambda>x. Inr (Inl undefined)) (\<lambda>x. Inr (Inr undefined)))") subsGuard_mix :: "guardedTerm_mix \<Rightarrow> name \<Rightarrow> name \<Rightarrow> guardedTerm_mix" ("_[_::=\<onesuperior>\<onesuperior>_]" [100, 100, 100] 100) and subsList_mix :: "sumList_mix \<Rightarrow> name \<Rightarrow> name \<Rightarrow> sumList_mix" ("_[_::=\<onesuperior>\<twosuperior>_]" [100, 100, 100] 100) and subs_mix :: "piMix \<Rightarrow> name \<Rightarrow> name \<Rightarrow> piMix" ("_[_::=\<onesuperior>_]" [100, 100, 100] 100)where "(a!<b>\<onesuperior>.P)[x::=\<onesuperior>\<onesuperior>y] = (a[x:::=y])!<(b[x:::=y])>\<onesuperior>.(P[x::=\<onesuperior>y])"| "\<lbrakk>atom b \<sharp> (x, y)\<rbrakk> \<Longrightarrow> (a?<b>\<onesuperior>.P)[x::=\<onesuperior>\<onesuperior>y] = (a[x:::=y])?<b>\<onesuperior>.(P[x::=\<onesuperior>y])"| "(<\<tau>\<onesuperior>>.P)[x::=\<onesuperior>\<onesuperior>y] = <\<tau>\<onesuperior>>.(P[x::=\<onesuperior>y])"| "(\<zero>\<onesuperior>)[x::=\<onesuperior>\<twosuperior>y] = \<zero>\<onesuperior>"| "(g \<oplus>\<onesuperior> xg)[x::=\<onesuperior>\<twosuperior>y] = (g[x::=\<onesuperior>\<onesuperior>y]) \<oplus>\<onesuperior> (xg[x::=\<onesuperior>\<twosuperior>y])"| "\<lbrakk>atom a \<sharp> (x, y)\<rbrakk> \<Longrightarrow> (<\<nu>a>\<onesuperior>P)[x::=\<onesuperior>y] = <\<nu>a>\<onesuperior>(P[x::=\<onesuperior>y])"| "(P \<parallel>\<onesuperior> Q)[x::=\<onesuperior>y] = (P[x::=\<onesuperior>y]) \<parallel>\<onesuperior> (Q[x::=\<onesuperior>y])"| "([a\<frown>\<onesuperior>b]P)[x::=\<onesuperior>y] = ([(a[x:::=y])\<frown>\<onesuperior>(b[x:::=y])](P[x::=\<onesuperior>y]))"| "(\<oplus>\<onesuperior>{xg})[x::=\<onesuperior>y] = \<oplus>\<onesuperior>{(xg[x::=\<onesuperior>\<twosuperior>y])}"| "\<lbrakk>atom b \<sharp> (x, y)\<rbrakk> \<Longrightarrow> (\<infinity>a?<b>\<onesuperior>.P)[x::=\<onesuperior>y] = \<infinity>(a[x:::=y])?<b>\<onesuperior>.(P[x::=\<onesuperior>y])"| "(succ\<onesuperior>)[x::=\<onesuperior>y] = succ\<onesuperior>" apply(auto simp add: piMix_distinct piMix_eq_iff) apply(subgoal_tac "\<And>p x r. subsGuard_mix_subsList_mix_subs_mix_graph x r \<Longrightarrow> subsGuard_mix_subsList_mix_subs_mix_graph (p \<bullet> x) (p \<bullet> r)") unfolding eqvt_def apply(rule allI) apply(simp add: permute_fun_def) apply(rule ext) apply(rule ext) apply(simp add: permute_bool_def) apply(rule iffI) apply(drule_tac x="p" in meta_spec) apply(drule_tac x="- p \<bullet> x" in meta_spec) apply(drule_tac x="- p \<bullet> xa" in meta_spec) apply(simp) apply(drule_tac x="-p" in meta_spec) apply(drule_tac x="x" in meta_spec) apply(drule_tac x="xa" in meta_spec) apply(simp) --"Equivariance" apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.induct) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(simp) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(simp only: atom_eqvt[symmetric] Pair_eqvt[symmetric] fresh_eqvt[symmetric] permute_bool_def) apply(simp) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(simp) apply(simp (no_asm_use) only: eqvts) apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(simp (no_asm_use) only: eqvts) apply(subst testl) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(subst testlr) apply(rotate_tac 2) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(perm_simp) apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(blast) apply(blast) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(simp only: atom_eqvt[symmetric] Pair_eqvt[symmetric] fresh_eqvt[symmetric] permute_bool_def) apply(simp) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(subst testrr) apply(rotate_tac 2) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(perm_simp) apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(blast) apply(blast) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(blast) apply(simp (no_asm_use) only: eqvts) apply(subst testlr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(blast) apply(simp (no_asm_use) only: eqvts) apply(subst testrr) apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases) apply(blast)+ apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) apply(simp only: atom_eqvt[symmetric] Pair_eqvt[symmetric] fresh_eqvt[symmetric] permute_bool_def) apply(blast) apply(perm_simp) apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros) --"Covered all cases" apply(case_tac x) apply(simp) apply(case_tac a) apply(simp) apply (rule_tac y="aa" and c="(b, c)" in guardedTerm_mix_sumList_mix_piMix.strong_exhaust(1)) apply(blast) apply(auto simp add: fresh_star_def)[1] apply(blast) apply(simp) apply(blast) apply(simp) apply(case_tac b) apply(simp) apply(case_tac a) apply(simp) apply (rule_tac ya="aa" in guardedTerm_mix_sumList_mix_piMix.strong_exhaust(2)) apply(blast) apply(blast) apply(simp) apply(case_tac ba) apply(simp) apply (rule_tac yb="a" and c="(bb,c)" in guardedTerm_mix_sumList_mix_piMix.strong_exhaust(3)) apply(auto simp add: fresh_star_def)[1] apply(blast) apply(blast) apply(blast) apply(auto simp add: fresh_star_def)[1] apply(blast) apply(simp) apply(blast) --"compatibility" apply (simp add: meta_eq_to_obj_eq[OF subs_mix_def, symmetric, unfolded fun_eq_iff]) apply (subgoal_tac "eqvt_at (\<lambda>(a, b, c). subs_mix a b c) (P, xa, ya)") apply (thin_tac "eqvt_at subsGuard_mix_subsList_mix_subs_mix_sumC (Inr (Inr (P, xa, ya)))") apply (thin_tac "eqvt_at subsGuard_mix_subsList_mix_subs_mix_sumC (Inr (Inr (Pa, xa, ya)))") prefer 2 apply (simp add: eqvt_at_def subs_mix_def) apply rule apply (subst testrr) apply (simp add: subsGuard_mix_subsList_mix_subs_mix_sumC_def) apply (simp add: THE_default_def)apply (case_tac "Ex1 (subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (P, xa, ya))))")apply simp_all[2]apply auto[1]apply (erule_tac x="x" in allE)apply simpapply (thin_tac "\<forall>p\<Colon>perm. p \<bullet> The (subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (P, xa, ya)))) = (if \<exists>!x\<Colon>guardedTerm_mix + sumList_mix + piMix. subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> P, p \<bullet> xa, p \<bullet> ya))) x then THE x\<Colon>guardedTerm_mix + sumList_mix + piMix. subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> P, p \<bullet> xa, p \<bullet> ya))) x else Inr (Inr undefined))")apply (thin_tac "\<forall>p\<Colon>perm. p \<bullet> (if \<exists>!x\<Colon>guardedTerm_mix + sumList_mix + piMix. subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (Pa, xa, ya))) x then THE x\<Colon>guardedTerm_mix + sumList_mix + piMix. subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (Pa, xa, ya))) x else Inr (Inr undefined)) = (if \<exists>!x\<Colon>guardedTerm_mix + sumList_mix + piMix. subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> Pa, p \<bullet> xa, p \<bullet> ya))) x then THE x\<Colon>guardedTerm_mix + sumList_mix + piMix. subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> Pa, p \<bullet> xa, p \<bullet> ya))) x else Inr (Inr undefined))")apply (thin_tac "atom b \<sharp> (xa, ya)")apply (thin_tac "atom ba \<sharp> (xa, ya)")apply (thin_tac "[[atom b]]lst. P = [[atom ba]]lst. Pa")apply(cases rule: subsGuard_mix_subsList_mix_subs_mix_graph.cases)apply assumptionapply (metis Inr_not_Inl)apply (metis Inr_not_Inl)apply (metis Inr_not_Inl)apply (metis Inr_inject Inr_not_Inl)apply (metis Inr_inject Inr_not_Inl)apply (rule_tac x="<\<nu>a>\<onesuperior>Sum_Type.Projr (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y)))))" in exI)apply clarifyapply (rule the1_equality)apply blast apply assumptionapply (rule_tac x="Sum_Type.Projr (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y))))) \<parallel>\<onesuperior> Sum_Type.Projr (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Q, xb, y)))))" in exI)apply clarifyapply (rule the1_equality)apply blast apply assumptionapply (rule_tac x="[(a[xb:::=y])\<frown>\<onesuperior>(bb[xb:::=y])]Sum_Type.Projr (Sum_Type.Projr(subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y)))))" in exI)apply clarifyapply (rule the1_equality)apply blast apply assumptionapply (rule_tac x="\<oplus>\<onesuperior>{Sum_Type.Projl (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inl (xg, xb, y)))))}" in exI)apply clarifyapply (rule the1_equality)apply blast apply assumptionapply (rule_tac x="\<infinity>(a[xb:::=y])?<bb>\<onesuperior>.Sum_Type.Projr (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y)))))" in exI)apply clarifyapply (rule the1_equality)apply blast apply assumptionapply (rule_tac x="succ\<onesuperior>" in exI)apply clarifyapply (rule the1_equality)apply blast apply assumptionapply simp(* Here the only real goal compatibility is left *) apply (erule Abs_lst1_fcb) apply (simp_all add: Abs_fresh_iff fresh_fun_eqvt_app) apply (subgoal_tac "atom ba \<sharp> (\<lambda>(a, x, y). subs_mix a x y) (P, xa, ya)") apply simp apply (erule fresh_eqvt_at) apply (simp_all add: fresh_Pair finite_supp eqvts eqvt_at_def fresh_Pair swap_fresh_fresh) donetermination (eqvt) by (lexicographic_order)lemma forget_mix: fixes g :: guardedTerm_mix and xg :: sumList_mix and P :: piMix and x :: name and y :: name shows "atom x \<sharp> g \<longrightarrow> g[x::=\<onesuperior>\<onesuperior>y] = g" and "atom x \<sharp> xg \<longrightarrow> xg[x::=\<onesuperior>\<twosuperior>y] = xg" and "atom x \<sharp> P \<longrightarrow> P[x::=\<onesuperior>y] = P"proof - show "atom x \<sharp> g \<longrightarrow> g[x::=\<onesuperior>\<onesuperior>y] = g" and "atom x \<sharp> xg \<longrightarrow> xg[x::=\<onesuperior>\<twosuperior>y] = xg" and "atom x \<sharp> P \<longrightarrow> P[x::=\<onesuperior>y] = P" using assms apply(nominal_induct g and xg and P avoiding: x y rule: piMix_strong_induct) by(auto simp add: piMix_eq_iff piMix_fresh fresh_at_base)qedlemma fresh_fact_mix: fixes g :: guardedTerm_mix and xg :: sumList_mix and P :: piMix and x :: name and y :: name and z :: name assumes "atom z \<sharp> y" shows "(z = x \<or> atom z \<sharp> g) \<longrightarrow> atom z \<sharp> g[x::=\<onesuperior>\<onesuperior>y]" and "(z = x \<or> atom z \<sharp> xg) \<longrightarrow> atom z \<sharp> xg[x::=\<onesuperior>\<twosuperior>y]" and "(z = x \<or> atom z \<sharp> P) \<longrightarrow> atom z \<sharp> P[x::=\<onesuperior>y]"proof - show "(z = x \<or> atom z \<sharp> g) \<longrightarrow> atom z \<sharp> g[x::=\<onesuperior>\<onesuperior>y]" and "(z = x \<or> atom z \<sharp> xg) \<longrightarrow> atom z \<sharp> xg[x::=\<onesuperior>\<twosuperior>y]" and "(z = x \<or> atom z \<sharp> P) \<longrightarrow> atom z \<sharp> P[x::=\<onesuperior>y]" using assms apply(nominal_induct g and xg and P avoiding: x y z rule: piMix_strong_induct) by(auto simp add: piMix_fresh fresh_at_base)qedlemma substitution_lemma_mix: fixes g :: guardedTerm_mix and xg :: sumList_mix and P :: piMix and s :: name and u :: name and x :: name and y :: name assumes "x \<noteq> y" and "atom x \<sharp> u" shows "g[x::=\<onesuperior>\<onesuperior>s][y::=\<onesuperior>\<onesuperior>u] = g[y::=\<onesuperior>\<onesuperior>u][x::=\<onesuperior>\<onesuperior>s[y:::=u]]" and "xg[x::=\<onesuperior>\<twosuperior>s][y::=\<onesuperior>\<twosuperior>u] = xg[y::=\<onesuperior>\<twosuperior>u][x::=\<onesuperior>\<twosuperior>s[y:::=u]]" and "P[x::=\<onesuperior>s][y::=\<onesuperior>u] = P[y::=\<onesuperior>u][x::=\<onesuperior>s[y:::=u]]"proof - show "g[x::=\<onesuperior>\<onesuperior>s][y::=\<onesuperior>\<onesuperior>u] = g[y::=\<onesuperior>\<onesuperior>u][x::=\<onesuperior>\<onesuperior>s[y:::=u]]" and "xg[x::=\<onesuperior>\<twosuperior>s][y::=\<onesuperior>\<twosuperior>u] = xg[y::=\<onesuperior>\<twosuperior>u][x::=\<onesuperior>\<twosuperior>s[y:::=u]]" and "P[x::=\<onesuperior>s][y::=\<onesuperior>u] = P[y::=\<onesuperior>u][x::=\<onesuperior>s[y:::=u]]" using assms apply(nominal_induct g and xg and P avoiding: x y s u rule: piMix_strong_induct) apply(simp_all add: fresh_fact_mix forget_mix) by(auto simp add: fresh_at_base)qedlemma perm_eq_subst_mix: fixes g :: guardedTerm_mix and xg :: sumList_mix and P :: piMix and x :: name and y :: name shows "atom y \<sharp> g \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> g = g[x::=\<onesuperior>\<onesuperior>y]" and "atom y \<sharp> xg \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> xg = xg[x::=\<onesuperior>\<twosuperior>y]" and "atom y \<sharp> P \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> P = P[x::=\<onesuperior>y]"proof - show "atom y \<sharp> g \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> g = g[x::=\<onesuperior>\<onesuperior>y]" and "atom y \<sharp> xg \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> xg = xg[x::=\<onesuperior>\<twosuperior>y]" and "atom y \<sharp> P \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> P = P[x::=\<onesuperior>y]" apply(nominal_induct g and xg and P avoiding: x y rule: piMix_strong_induct) by(auto simp add: piMix_fresh fresh_at_base)qedlemma subst_id_mix: fixes g :: guardedTerm_mix and xg :: sumList_mix and P :: piMix and x :: name shows "g[x::=\<onesuperior>\<onesuperior>x] = g" and "xg[x::=\<onesuperior>\<twosuperior>x] = xg" and "P[x::=\<onesuperior>x] = P"proof - show "g[x::=\<onesuperior>\<onesuperior>x] = g" and "xg[x::=\<onesuperior>\<twosuperior>x] = xg" and "P[x::=\<onesuperior>x] = P" apply(nominal_induct g and xg and P avoiding: x rule: piMix_strong_induct) by(auto)qedlemma alphaRes_subst_mix: fixes a :: name and P :: piMix and z :: name assumes "atom z \<sharp> P" shows "<\<nu>a>\<onesuperior>P = <\<nu>z>\<onesuperior>(P[a::=\<onesuperior>z])"proof(cases "a = z") assume "a = z" thus ?thesis by(simp add: subst_id_mix)next assume "a \<noteq> z" thus ?thesis using assms by(simp add: alphaRes_mix perm_eq_subst_mix)qedlemma alphaInput_subst_mix: fixes a :: name and b :: name and P :: piMix and z :: name assumes "atom z \<sharp> P" shows "a?<b>\<onesuperior>.P = a?<z>\<onesuperior>.(P[b::=\<onesuperior>z])"proof(cases "b = z") assume "b = z" thus ?thesis by(simp add: subst_id_mix)next assume "b \<noteq> z" thus ?thesis using assms by(simp add: alphaInput_mix perm_eq_subst_mix)qedlemma alphaRep_subst_mix: fixes a :: name and b :: name and P :: piMix and z :: name assumes "atom z \<sharp> P" shows "\<infinity>a?<b>\<onesuperior>.P = \<infinity>a?<z>\<onesuperior>.(P[b::=\<onesuperior>z])"proof(cases "b = z") assume "b = z" thus ?thesis by(simp add: subst_id_mix)next assume "b \<noteq> z" thus ?thesis using assms by(simp add: alphaRep_mix perm_eq_subst_mix)qedinductive fresh_list_guard_mix :: "name list \<Rightarrow> guardedTerm_mix \<Rightarrow> bool"where "fresh_list_guard_mix [] g"| "\<lbrakk>atom n \<sharp> g; fresh_list_guard_mix xn g\<rbrakk> \<Longrightarrow> fresh_list_guard_mix (n#xn) g"equivariance fresh_list_guard_mixnominal_inductive fresh_list_guard_mix doneinductive fresh_list_sumList_mix :: "name list \<Rightarrow> sumList_mix \<Rightarrow> bool"where "fresh_list_sumList_mix [] xg"| "\<lbrakk>atom n \<sharp> xg; fresh_list_sumList_mix xn xg\<rbrakk> \<Longrightarrow> fresh_list_sumList_mix (n#xn) xg"equivariance fresh_list_sumList_mixnominal_inductive fresh_list_sumList_mix doneinductive fresh_list_mix :: "name list \<Rightarrow> piMix \<Rightarrow> bool"where "fresh_list_mix [] P"| "\<lbrakk>atom n \<sharp> P; fresh_list_mix xn P\<rbrakk> \<Longrightarrow> fresh_list_mix (n#xn) P"equivariance fresh_list_mixnominal_inductive fresh_list_mix doneend