theory LamEx
imports Nominal "../QuotMain" "../QuotList"
begin
atom_decl name
datatype rlam =
rVar "name"
| rApp "rlam" "rlam"
| rLam "name" "rlam"
fun
rfv :: "rlam \<Rightarrow> name set"
where
rfv_var: "rfv (rVar a) = {a}"
| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
| rfv_lam: "rfv (rLam a t) = (rfv t) - {a}"
overloading
perm_rlam \<equiv> "perm :: 'x prm \<Rightarrow> rlam \<Rightarrow> rlam" (unchecked)
begin
fun
perm_rlam
where
"perm_rlam pi (rVar a) = rVar (pi \<bullet> a)"
| "perm_rlam pi (rApp t1 t2) = rApp (perm_rlam pi t1) (perm_rlam pi t2)"
| "perm_rlam pi (rLam a t) = rLam (pi \<bullet> a) (perm_rlam pi t)"
end
inductive
alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
where
a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
| a3: "\<lbrakk>t \<approx> ([(a,b)] \<bullet> s); a \<notin> rfv (rLam b t)\<rbrakk> \<Longrightarrow> rLam a t \<approx> rLam b s"
lemma helper:
fixes t::"rlam"
and a::"name"
shows "[(a, a)] \<bullet> t = t"
by (induct t)
(auto simp add: calc_atm)
lemma alpha_refl:
fixes t::"rlam"
shows "t \<approx> t"
apply(induct t rule: rlam.induct)
apply(simp add: a1)
apply(simp add: a2)
apply(rule a3)
apply(simp add: helper)
apply(simp)
done
lemma alpha_equivp:
shows "equivp alpha"
sorry
quotient_type lam = rlam / alpha
by (rule alpha_equivp)
quotient_definition
"Var :: name \<Rightarrow> lam"
as
"rVar"
quotient_definition
"App :: lam \<Rightarrow> lam \<Rightarrow> lam"
as
"rApp"
quotient_definition
"Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
as
"rLam"
quotient_definition
"fv :: lam \<Rightarrow> name set"
as
"rfv"
thm Var_def
thm App_def
thm Lam_def
thm fv_def
(* definition of overloaded permutation function *)
(* for the lifted type lam *)
overloading
perm_lam \<equiv> "perm :: 'x prm \<Rightarrow> lam \<Rightarrow> lam" (unchecked)
begin
quotient_definition
"perm_lam :: 'x prm \<Rightarrow> lam \<Rightarrow> lam"
as
"perm::'x prm \<Rightarrow> rlam \<Rightarrow> rlam"
end
thm perm_lam_def
(* lemmas that need to be lifted *)
lemma pi_var_eqvt1:
fixes pi::"'x prm"
shows "(pi \<bullet> rVar a) \<approx> rVar (pi \<bullet> a)"
by (simp add: alpha_refl)
lemma pi_var_eqvt2:
fixes pi::"'x prm"
shows "(pi \<bullet> rVar a) = rVar (pi \<bullet> a)"
by (simp)
lemma pi_app_eqvt1:
fixes pi::"'x prm"
shows "(pi \<bullet> rApp t1 t2) \<approx> rApp (pi \<bullet> t1) (pi \<bullet> t2)"
by (simp add: alpha_refl)
lemma pi_app_eqvt2:
fixes pi::"'x prm"
shows "(pi \<bullet> rApp t1 t2) = rApp (pi \<bullet> t1) (pi \<bullet> t2)"
by (simp)
lemma pi_lam_eqvt1:
fixes pi::"'x prm"
shows "(pi \<bullet> rLam a t) \<approx> rLam (pi \<bullet> a) (pi \<bullet> t)"
by (simp add: alpha_refl)
lemma pi_lam_eqvt2:
fixes pi::"'x prm"
shows "(pi \<bullet> rLam a t) = rLam (pi \<bullet> a) (pi \<bullet> t)"
by (simp add: alpha)
lemma real_alpha:
assumes a: "t = [(a,b)]\<bullet>s" "a\<sharp>[b].s"
shows "Lam a t = Lam b s"
using a
unfolding fresh_def supp_def
sorry
lemma perm_rsp[quot_respect]:
"(op = ===> alpha ===> alpha) op \<bullet> op \<bullet>"
apply(auto)
(* this is propably true if some type conditions are imposed ;o) *)
sorry
lemma fresh_rsp:
"(op = ===> alpha ===> op =) fresh fresh"
apply(auto)
(* this is probably only true if some type conditions are imposed *)
sorry
lemma rVar_rsp[quot_respect]:
"(op = ===> alpha) rVar rVar"
by (auto intro: a1)
lemma rApp_rsp[quot_respect]: "(alpha ===> alpha ===> alpha) rApp rApp"
by (auto intro: a2)
lemma rLam_rsp[quot_respect]: "(op = ===> alpha ===> alpha) rLam rLam"
apply(auto)
apply(rule a3)
apply(simp add: helper)
apply(simp)
done
lemma rfv_rsp[quot_respect]:
"(alpha ===> op =) rfv rfv"
sorry
lemma rvar_inject: "rVar a \<approx> rVar b = (a = b)"
apply (auto)
apply (erule alpha.cases)
apply (simp_all add: rlam.inject alpha_refl)
done
lemma pi_var1:
fixes pi::"'x prm"
shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
by (lifting pi_var_eqvt1)
lemma pi_var2:
fixes pi::"'x prm"
shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
by (lifting pi_var_eqvt2)
lemma pi_app:
fixes pi::"'x prm"
shows "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
by (lifting pi_app_eqvt2)
lemma pi_lam:
fixes pi::"'x prm"
shows "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
by (lifting pi_lam_eqvt2)
lemma fv_var:
shows "fv (Var a) = {a}"
by (lifting rfv_var)
lemma fv_app:
shows "fv (App t1 t2) = fv t1 \<union> fv t2"
by (lifting rfv_app)
lemma fv_lam:
shows "fv (Lam a t) = fv t - {a}"
by (lifting rfv_lam)
lemma a1:
"a = b \<Longrightarrow> Var a = Var b"
by (lifting a1)
lemma a2:
"\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
by (lifting a2)
lemma a3:
"\<lbrakk>x = [(a, b)] \<bullet> xa; a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> Lam a x = Lam b xa"
by (lifting a3)
lemma alpha_cases:
"\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
\<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
\<And>x a b xa. \<lbrakk>a1 = Lam a x; a2 = Lam b xa; x = [(a, b)] \<bullet> xa; a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> P\<rbrakk>
\<Longrightarrow> P"
by (lifting alpha.cases)
lemma alpha_induct:
"\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
\<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
\<And>x a b xa.
\<lbrakk>x = [(a, b)] \<bullet> xa; qxb x ([(a, b)] \<bullet> xa); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> qxb (Lam a x) (Lam b xa)\<rbrakk>
\<Longrightarrow> qxb qx qxa"
by (lifting alpha.induct)
lemma var_inject:
"(Var a = Var b) = (a = b)"
by (lifting rvar_inject)
lemma app_inject:
"(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
sorry
lemma var_supp1:
shows "(supp (Var a)) = ((supp a)::name set)"
apply(simp add: supp_def pi_var1 var_inject)
done
lemma var_supp:
shows "(supp (Var a)) = {a::name}"
using var_supp1
apply(simp add: supp_atm)
done
lemma app_supp:
shows "supp (App t1 t2) = (supp t1) \<union> ((supp t2)::name set)"
apply(simp only: supp_def pi_app app_inject)
apply(simp add: Collect_imp_eq Collect_neg_eq)
done
lemma lam_supp:
shows "supp (Lam x t) = ((supp ([x].t))::name set)"
apply(simp add: supp_def pi_lam)
sorry
lemma lam_induct:
"\<lbrakk>\<And>name. P (Var name);
\<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
\<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk>
\<Longrightarrow> P lam"
by (lifting rlam.induct)
instance lam::pt_name
apply(default)
apply(induct_tac x rule: lam_induct)
apply(simp add: pi_var1)
apply(simp add: pi_app)
apply(simp add: pi_lam)
apply(induct_tac x rule: lam_induct)
apply(simp add: pi_var1 pt_name2)
apply(simp add: pi_app)
apply(simp add: pi_lam pt_name2)
apply(induct_tac x rule: lam_induct)
apply(simp add: pi_var1 pt_name3)
apply(simp add: pi_app)
apply(simp add: pi_lam pt_name3)
done
instance lam::fs_name
apply(default)
apply(induct_tac x rule: lam_induct)
apply(simp add: var_supp)
apply(simp add: app_supp)
sorry
lemma fresh_lam:
"(a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> a \<sharp> t)"
apply(simp add: fresh_def)
apply(simp add: lam_supp abs_supp)
apply(auto)
done
lemma lam_induct_strong:
fixes a::"'a::fs_name"
assumes a1: "\<And>name b. P b (Var name)"
and a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
and a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; name \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
shows "P a lam"
proof -
have "\<And>(pi::name prm) a. P a (pi \<bullet> lam)"
proof (induct lam rule: lam_induct)
case (1 name pi)
show "P a (pi \<bullet> Var name)"
apply (simp only: pi_var1)
apply (rule a1)
done
next
case (2 lam1 lam2 pi)
have b1: "\<And>(pi::name prm) a. P a (pi \<bullet> lam1)" by fact
have b2: "\<And>(pi::name prm) a. P a (pi \<bullet> lam2)" by fact
show "P a (pi \<bullet> App lam1 lam2)"
apply (simp only: pi_app)
apply (rule a2)
apply (rule b1)
apply (rule b2)
done
next
case (3 name lam pi a)
have b: "\<And>(pi::name prm) a. P a (pi \<bullet> lam)" by fact
obtain c::name where fr: "c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
apply(rule exists_fresh[of "(a, pi\<bullet>name, pi\<bullet>lam)"])
apply(simp_all add: fs_name1)
done
from b fr have p: "P a (Lam c (([(c, pi\<bullet>name)]@pi)\<bullet>lam))"
apply -
apply(rule a3)
apply(blast)
apply(simp)
done
have eq: "[(c, pi\<bullet>name)] \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
apply(rule perm_fresh_fresh)
using fr
apply(simp add: fresh_lam)
apply(simp add: fresh_lam)
done
show "P a (pi \<bullet> Lam name lam)"
apply (simp add: pi_lam)
apply(subst eq[symmetric])
using p
apply(simp only: pi_lam pt_name2 swap_simps)
done
qed
then have "P a (([]::name prm) \<bullet> lam)" by blast
then show "P a lam" by simp
qed
lemma var_supp:
shows "supp (Var a) = ((supp a)::name set)"
apply(simp add: supp_def)
apply(simp add: pi_var2)
apply(simp add: var_inject)
done
lemma var_fresh:
fixes a::"name"
shows "(a \<sharp> (Var b)) = (a \<sharp> b)"
apply(simp add: fresh_def)
apply(simp add: var_supp)
done
end