The nominal infrastructure for fset. 'fs' missing, but not needed so far.
theory Nominal2_FSet
imports FSet Nominal2_Supp
begin
lemma permute_rsp_fset[quot_respect]:
"(op = ===> op \<approx> ===> op \<approx>) permute permute"
apply (simp add: eqvts[symmetric])
apply clarify
apply (subst permute_minus_cancel(1)[symmetric, of "xb"])
apply (subst mem_eqvt[symmetric])
apply (subst (2) permute_minus_cancel(1)[symmetric, of "xb"])
apply (subst mem_eqvt[symmetric])
apply (erule_tac x="- x \<bullet> xb" in allE)
apply simp
done
instantiation FSet.fset :: (pt) pt
begin
term "permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list"
quotient_definition
"permute_fset :: perm \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list"
lemma permute_list_zero: "0 \<bullet> (x :: 'a list) = x"
by (rule permute_zero)
lemma permute_fset_zero: "0 \<bullet> (x :: 'a fset) = x"
by (lifting permute_list_zero)
lemma permute_list_plus: "(p + q) \<bullet> (x :: 'a list) = p \<bullet> q \<bullet> x"
by (rule permute_plus)
lemma permute_fset_plus: "(p + q) \<bullet> (x :: 'a fset) = p \<bullet> q \<bullet> x"
by (lifting permute_list_plus)
instance
apply default
apply (rule permute_fset_zero)
apply (rule permute_fset_plus)
done
end
lemma permute_fset[simp,eqvt]:
"p \<bullet> ({||} :: 'a :: pt fset) = {||}"
"p \<bullet> finsert (x :: 'a :: pt) xs = finsert (p \<bullet> x) (p \<bullet> xs)"
by (lifting permute_list.simps)
lemma map_eqvt[eqvt]: "pi \<bullet> (map f l) = map (pi \<bullet> f) (pi \<bullet> l)"
apply (induct l)
apply (simp_all)
apply (simp only: eqvt_apply)
done
lemma fmap_eqvt[eqvt]: "pi \<bullet> (fmap f l) = fmap (pi \<bullet> f) (pi \<bullet> l)"
by (lifting map_eqvt)
lemma fset_to_set_eqvt[eqvt]: "pi \<bullet> (fset_to_set x) = fset_to_set (pi \<bullet> x)"
by (lifting set_eqvt)
lemma supp_fset_to_set:
"supp (fset_to_set x) = supp x"
apply (simp add: supp_def)
apply (simp add: eqvts)
apply (simp add: fset_cong)
done
lemma atom_fmap_cong:
shows "(fmap atom x = fmap atom y) = (x = y)"
apply(rule inj_fmap_eq_iff)
apply(simp add: inj_on_def)
done
lemma supp_fmap_atom:
"supp (fmap atom x) = supp x"
apply (simp add: supp_def)
apply (simp add: eqvts eqvts_raw atom_fmap_cong)
done
(*lemma "\<not> (memb x S) \<Longrightarrow> \<not> (memb y T) \<Longrightarrow> ((x # S) \<approx> (y # T)) = (x = y \<and> S \<approx> T)"*)
lemma infinite_Un:
shows "infinite (S \<union> T) \<longleftrightarrow> infinite S \<or> infinite T"
by simp
lemma supp_insert: "supp (insert (x :: 'a :: fs) xs) = supp x \<union> supp xs"
oops
lemma supp_finsert:
"supp (finsert (x :: 'a :: fs) S) = supp x \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
apply simp
(* apply (simp add: supp_insert supp_fset_to_set) *)
oops
instance fset :: (fs) fs
apply (default)
apply (induct_tac x rule: fset_induct)
apply (simp add: supp_def eqvts)
(* apply (simp add: supp_finsert) *)
(* apply default ? *)
oops
end