(* Title: nominal_dt_alpha.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions and proofs for the alpha-relations.
*)
signature NOMINAL_DT_ALPHA =
sig
val define_raw_alpha: string list -> typ list -> cns_info list -> bn_info list ->
bclause list list list -> term list -> Proof.context ->
term list * term list * thm list * thm list * thm * local_theory
val mk_alpha_distincts: Proof.context -> thm list -> thm list ->
term list -> typ list -> thm list
val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
thm list -> thm list
val induct_prove: typ list -> (typ * (term -> term)) list -> thm ->
(Proof.context -> int -> tactic) -> Proof.context -> thm list
val alpha_prove: term list -> (term * ((term * term) -> term)) list -> thm ->
(Proof.context -> int -> tactic) -> Proof.context -> thm list
val raw_prove_refl: term list -> term list -> thm list -> thm -> Proof.context -> thm list
val raw_prove_sym: term list -> thm list -> thm -> Proof.context -> thm list
val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
val raw_prove_equivp: term list -> term list -> thm list -> thm list -> thm list ->
Proof.context -> thm list * thm list
val raw_prove_bn_imp: term list -> term list -> thm list -> thm -> Proof.context -> thm list
val raw_fv_bn_rsp_aux: term list -> term list -> term list -> term list ->
term list -> thm -> thm list -> Proof.context -> thm list
val raw_size_rsp_aux: term list -> thm -> thm list -> Proof.context -> thm list
val raw_constrs_rsp: term list -> term list -> thm list -> thm list -> Proof.context -> thm list
val raw_alpha_bn_rsp: term list -> thm list -> thm list -> thm list
val raw_perm_bn_rsp: term list -> term list -> thm -> thm list -> thm list ->
Proof.context -> thm list
val mk_funs_rsp: thm -> thm
val mk_alpha_permute_rsp: thm -> thm
end
structure Nominal_Dt_Alpha: NOMINAL_DT_ALPHA =
struct
fun lookup xs x = the (AList.lookup (op=) xs x)
fun group xs = AList.group (op=) xs
(** definition of the inductive rules for alpha and alpha_bn **)
(* construct the compound terms for prod_fv and prod_alpha *)
fun mk_prod_fv (t1, t2) =
let
val ty1 = fastype_of t1
val ty2 = fastype_of t2
val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
in
Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
end
fun mk_prod_alpha (t1, t2) =
let
val ty1 = fastype_of t1
val ty2 = fastype_of t2
val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
val resT = [prodT, prodT] ---> @{typ "bool"}
in
Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
end
(* generates the compound binder terms *)
fun mk_binders lthy bmode args binders =
let
fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
| bind_set _ args (SOME bn, i) = bn $ (nth args i)
fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
| bind_lst _ args (SOME bn, i) = bn $ (nth args i)
val (combine_fn, bind_fn) =
case bmode of
Lst => (mk_append, bind_lst)
| Set => (mk_union, bind_set)
| Res => (mk_union, bind_set)
in
binders
|> map (bind_fn lthy args)
|> foldl1 combine_fn
end
(* produces the term for an alpha with abstraction *)
fun mk_alpha_term bmode fv alpha args args' binders binders' =
let
val (alpha_name, binder_ty) =
case bmode of
Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
| Set => (@{const_name "alpha_set"}, @{typ "atom set"})
| Res => (@{const_name "alpha_res"}, @{typ "atom set"})
val ty = fastype_of args
val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
val alpha_ty = [ty, ty] ---> @{typ "bool"}
val fv_ty = ty --> @{typ "atom set"}
val pair_lhs = HOLogic.mk_prod (binders, args)
val pair_rhs = HOLogic.mk_prod (binders', args')
in
HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool})
$ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
end
(* for non-recursive binders we have to produce alpha_bn premises *)
fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder =
case binder of
(NONE, _) => []
| (SOME bn, i) =>
if member (op=) bodies i then []
else [lookup alpha_bn_map bn $ nth args i $ nth args' i]
(* generate the premises for an alpha rule; mk_frees is used
if no binders are present *)
fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
let
fun mk_frees i =
let
val arg = nth args i
val arg' = nth args' i
val ty = fastype_of arg
in
if nth is_rec i
then fst (lookup alpha_map ty) $ arg $ arg'
else HOLogic.mk_eq (arg, arg')
end
fun mk_alpha_fv i =
let
val ty = fastype_of (nth args i)
in
case AList.lookup (op=) alpha_map ty of
NONE => (HOLogic.eq_const ty, supp_const ty)
| SOME (alpha, fv) => (alpha, fv)
end
in
case bclause of
BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies
| BC (bmode, binders, bodies) =>
let
val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
val comp_fv = foldl1 mk_prod_fv fvs
val comp_alpha = foldl1 mk_prod_alpha alphas
val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
val comp_binders = mk_binders lthy bmode args binders
val comp_binders' = mk_binders lthy bmode args' binders
val alpha_prem =
mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
in
map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
end
end
(* produces the introduction rule for an alpha rule *)
fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_names' = Name.variant_list arg_names arg_names
val args = map Free (arg_names ~~ arg_tys)
val args' = map Free (arg_names' ~~ arg_tys)
val alpha = fst (lookup alpha_map ty)
val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
in
Library.foldr Logic.mk_implies (flat prems, concl)
end
(* produces the premise of an alpha-bn rule; we only need to
treat the case special where the binding clause is empty;
- if the body is not included in the bn_info, then we either
produce an equation or an alpha-premise
- if the body is included in the bn_info, then we create
either a recursive call to alpha-bn, or no premise *)
fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
let
fun mk_alpha_bn_prem i =
let
val arg = nth args i
val arg' = nth args' i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) alpha_map ty) of
NONE => [HOLogic.mk_eq (arg, arg')]
| SOME (alpha, _) => [alpha $ arg $ arg'])
| SOME (NONE) => []
| SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
end
in
case bclause of
BC (_, [], bodies) =>
map HOLogic.mk_Trueprop (flat (map mk_alpha_bn_prem bodies))
| _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
end
fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_names' = Name.variant_list arg_names arg_names
val args = map Free (arg_names ~~ arg_tys)
val args' = map Free (arg_names' ~~ arg_tys)
val alpha_bn = lookup alpha_bn_map bn_trm
val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
in
Library.foldr Logic.mk_implies (flat prems, concl)
end
fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
fun define_raw_alpha raw_full_ty_names raw_tys cns_info bn_info bclausesss fvs lthy =
let
val alpha_names = map (prefix "alpha_" o Long_Name.base_name) raw_full_ty_names
val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) raw_tys
val alpha_frees = map Free (alpha_names ~~ alpha_tys)
val alpha_map = raw_tys ~~ (alpha_frees ~~ fvs)
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val alpha_bn_names = map (prefix "alpha_") bn_names
val alpha_bn_arg_tys = map (nth raw_tys) bn_tys
val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
val alpha_bn_map = bns ~~ alpha_bn_frees
val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) cns_info bclausesss
val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map cns_info bclausesss) bn_info
val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
(alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
val (alphas, lthy') = Inductive.add_inductive_i
{quiet_mode = true, verbose = false, alt_name = Binding.empty,
coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
all_alpha_names [] all_alpha_intros [] lthy
val all_alpha_trms_loc = #preds alphas;
val alpha_induct_loc = #raw_induct alphas;
val alpha_intros_loc = #intrs alphas;
val alpha_cases_loc = #elims alphas;
val phi = ProofContext.export_morphism lthy' lthy;
val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc
val (all_alpha_trms', _) = Variable.importT_terms all_alpha_trms lthy
val alpha_induct = Morphism.thm phi alpha_induct_loc;
val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms'
in
(alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
end
(** produces the distinctness theorems **)
(* transforms the distinctness theorems of the constructors
to "not-alphas" of the constructors *)
fun mk_distinct_goal ty_trm_assoc neq =
let
val (lhs, rhs) =
neq
|> HOLogic.dest_Trueprop
|> HOLogic.dest_not
|> HOLogic.dest_eq
val ty = fastype_of lhs
in
(lookup ty_trm_assoc ty) $ lhs $ rhs
|> HOLogic.mk_not
|> HOLogic.mk_Trueprop
end
fun distinct_tac cases_thms distinct_thms =
rtac notI THEN' eresolve_tac cases_thms
THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct_thms)
fun mk_alpha_distincts ctxt cases_thms distinct_thms alpha_trms alpha_tys =
let
(* proper import of type-variables does not work,
since then they are replaced by new variables, messing
up the ty_trm assoc list *)
val distinct_thms' = map Thm.legacy_freezeT distinct_thms
val ty_trm_assoc = alpha_tys ~~ alpha_trms
fun mk_alpha_distinct distinct_trm =
let
val ([trm'], ctxt') = Variable.import_terms true [distinct_trm] ctxt
val goal = mk_distinct_goal ty_trm_assoc distinct_trm
in
Goal.prove ctxt' [] [] goal
(K (distinct_tac cases_thms distinct_thms 1))
|> singleton (Variable.export ctxt' ctxt)
end
in
map (mk_alpha_distinct o prop_of) distinct_thms'
|> map Thm.varifyT_global
end
(** produces the alpha_eq_iff simplification rules **)
(* in case a theorem is of the form (Rel Const Const), it will be
rewritten to ((Rel Const = Const) = True)
*)
fun mk_simp_rule thm =
case (prop_of thm) of
@{term "Trueprop"} $ (_ $ Const _ $ Const _) => thm RS @{thm eqTrueI}
| _ => thm
fun alpha_eq_iff_tac dist_inj intros elims =
SOLVED' (asm_full_simp_tac (HOL_ss addsimps intros)) ORELSE'
(rtac @{thm iffI} THEN'
RANGE [eresolve_tac elims THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps dist_inj),
asm_full_simp_tac (HOL_ss addsimps intros)])
fun mk_alpha_eq_iff_goal thm =
let
val prop = prop_of thm;
val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop);
val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop);
fun list_conj l = foldr1 HOLogic.mk_conj l;
in
if hyps = [] then HOLogic.mk_Trueprop concl
else HOLogic.mk_Trueprop (HOLogic.mk_eq (concl, list_conj hyps))
end;
fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
let
val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
val goals = map mk_alpha_eq_iff_goal thms_imp;
val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
in
Variable.export ctxt' ctxt thms
|> map mk_simp_rule
end
(** proof by induction over types **)
fun induct_prove tys props induct_thm cases_tac ctxt =
let
val (arg_names, ctxt') =
Variable.variant_fixes (replicate (length tys) "x") ctxt
val args = map2 (curry Free) arg_names tys
val true_trms = replicate (length tys) (K @{term True})
fun apply_all x fs = map (fn f => f x) fs
val goals =
group (props @ (tys ~~ true_trms))
|> map snd
|> map2 apply_all args
|> map fold_conj
|> foldr1 HOLogic.mk_conj
|> HOLogic.mk_Trueprop
fun tac ctxt =
HEADGOAL
(DETERM o (rtac induct_thm)
THEN_ALL_NEW
(REPEAT_ALL_NEW (FIRST' [resolve_tac @{thms TrueI conjI}, cases_tac ctxt])))
in
Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
|> singleton (ProofContext.export ctxt' ctxt)
|> Datatype_Aux.split_conj_thm
|> map Datatype_Aux.split_conj_thm
|> flat
|> filter_out (is_true o concl_of)
|> map zero_var_indexes
end
(** proof by induction over the alpha-definitions **)
fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
let
val arg_tys = map (domain_type o fastype_of) alphas
val ((arg_names1, arg_names2), ctxt') =
ctxt
|> Variable.variant_fixes (replicate (length alphas) "x")
||>> Variable.variant_fixes (replicate (length alphas) "y")
val args1 = map2 (curry Free) arg_names1 arg_tys
val args2 = map2 (curry Free) arg_names2 arg_tys
val true_trms = replicate (length alphas) (K @{term True})
fun apply_all x fs = map (fn f => f x) fs
val goals_rhs =
group (props @ (alphas ~~ true_trms))
|> map snd
|> map2 apply_all (args1 ~~ args2)
|> map fold_conj
fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
val goals_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
val goals =
(map2 (curry HOLogic.mk_imp) goals_lhs goals_rhs)
|> foldr1 HOLogic.mk_conj
|> HOLogic.mk_Trueprop
fun tac ctxt =
HEADGOAL
(DETERM o (rtac alpha_induct_thm)
THEN_ALL_NEW FIRST' [rtac @{thm TrueI}, cases_tac ctxt])
in
Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
|> singleton (ProofContext.export ctxt' ctxt)
|> Datatype_Aux.split_conj_thm
|> map (fn th => th RS mp)
|> map Datatype_Aux.split_conj_thm
|> flat
|> filter_out (is_true o concl_of)
|> map zero_var_indexes
end
(** reflexivity proof for the alphas **)
val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}
fun cases_tac intros ctxt =
let
val prod_simps = @{thms split_conv prod_alpha_def prod_rel_def}
val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac
val bound_tac =
EVERY' [ rtac exi_zero,
resolve_tac @{thms alpha_refl},
asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
in
resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]
end
fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
let
val arg_tys =
alpha_trms
|> map fastype_of
|> map domain_type
val arg_bn_tys =
alpha_bns
|> map fastype_of
|> map domain_type
val props =
map (fn (ty, c) => (ty, fn x => c $ x $ x))
((arg_tys ~~ alpha_trms) @ (arg_bn_tys ~~ alpha_bns))
in
induct_prove arg_tys props raw_dt_induct (cases_tac alpha_intros) ctxt
end
(** symmetry proof for the alphas **)
val exi_neg = @{lemma "(EX (p::perm). P p) ==> (!!q. P q ==> Q (- q)) ==> EX p. Q p"
by (erule exE, rule_tac x="-p" in exI, auto)}
(* for premises that contain binders *)
fun prem_bound_tac pred_names ctxt =
let
fun trans_prem_tac pred_names ctxt =
SUBPROOF (fn {prems, context, ...} =>
let
val prems' = map (transform_prem1 context pred_names) prems
in
resolve_tac prems' 1
end) ctxt
val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel_def alphas}
in
EVERY'
[ etac exi_neg,
resolve_tac @{thms alpha_sym_eqvt},
asm_full_simp_tac (HOL_ss addsimps prod_simps),
Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
trans_prem_tac pred_names ctxt ]
end
fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
let
val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
fun tac ctxt =
let
val alpha_names = map (fst o dest_Const) alpha_trms
in
resolve_tac alpha_intros THEN_ALL_NEW
FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
end
in
alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt
end
(** transitivity proof for alphas **)
(* applies cases rules and resolves them with the last premise *)
fun ecases_tac cases =
Subgoal.FOCUS (fn {prems, ...} =>
HEADGOAL (resolve_tac cases THEN' rtac (List.last prems)))
fun aatac pred_names =
SUBPROOF (fn {prems, context, ...} =>
HEADGOAL (resolve_tac (map (transform_prem1 context pred_names) prems)))
(* instantiates exI with the permutation p + q *)
val perm_inst_tac =
Subgoal.FOCUS (fn {params, ...} =>
let
val (p, q) = pairself snd (last2 params)
val pq_inst = foldl1 (uncurry Thm.capply) [@{cterm "plus::perm => perm => perm"}, p, q]
val exi_inst = Drule.instantiate' [SOME (@{ctyp "perm"})] [NONE, SOME pq_inst] @{thm exI}
in
HEADGOAL (rtac exi_inst)
end)
fun non_trivial_cases_tac pred_names intros ctxt =
let
val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel_def}
in
resolve_tac intros
THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN'
TRY o EVERY' (* if binders are present *)
[ etac @{thm exE},
etac @{thm exE},
perm_inst_tac ctxt,
resolve_tac @{thms alpha_trans_eqvt},
atac,
aatac pred_names ctxt,
Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
end
fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
let
fun all_cases ctxt =
asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms)
THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
in
EVERY' [ rtac @{thm allI}, rtac @{thm impI},
ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
end
fun prep_trans_goal alpha_trm (arg1, arg2) =
let
val arg_ty = fastype_of arg1
val mid = alpha_trm $ arg2 $ (Bound 0)
val rhs = alpha_trm $ arg1 $ (Bound 0)
in
HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
end
fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
let
val alpha_names = map (fst o dest_Const) alpha_trms
val props = map prep_trans_goal alpha_trms
in
alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
(prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
end
(** proves the equivp predicate for all alphas **)
val reflp_def' =
@{lemma "reflp R == !x. R x x" by (simp add: reflp_def refl_on_def)}
val symp_def' =
@{lemma "symp R == !x y . R x y --> R y x" by (simp add: symp_def sym_def)}
val transp_def' =
@{lemma "transp R == !x y. R x y --> (!z. R y z --> R x z)"
by (rule eq_reflection, auto simp add: trans_def transp_def)}
fun raw_prove_equivp alphas alpha_bns refl symm trans ctxt =
let
val refl' = map (fold_rule [reflp_def'] o atomize) refl
val symm' = map (fold_rule [symp_def'] o atomize) symm
val trans' = map (fold_rule [transp_def'] o atomize) trans
fun prep_goal t =
HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t)
in
Goal.prove_multi ctxt [] [] (map prep_goal (alphas @ alpha_bns))
(K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac @{thm equivpI} THEN'
RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
|> chop (length alphas)
end
(* proves that alpha_raw implies alpha_bn *)
fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt =
SUBPROOF (fn {prems, context, ...} =>
let
val prems' = flat (map Datatype_Aux.split_conj_thm prems)
val prems'' = map (transform_prem1 context pred_names) prems'
in
HEADGOAL
(REPEAT_ALL_NEW
(FIRST' [ rtac @{thm TrueI},
rtac @{thm conjI},
resolve_tac prems',
resolve_tac prems'',
resolve_tac alpha_intros ]))
end) ctxt
fun raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct ctxt =
let
val arg_ty = domain_type o fastype_of
val alpha_names = map (fst o dest_Const) alpha_trms
val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
val props = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => t $ x $ y)) alpha_bn_trms
in
alpha_prove (alpha_trms @ alpha_bn_trms) props alpha_induct
(raw_prove_bn_imp_tac alpha_names alpha_intros) ctxt
end
(* respectfulness for fv_raw / bn_raw *)
fun raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms fvs bns fv_bns alpha_induct simps ctxt =
let
val arg_ty = domain_type o fastype_of
val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
fun mk_eq' t x y = HOLogic.mk_eq (t $ x, t $ y)
val prop1 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) fvs
val prop2 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) (bns @ fv_bns)
val prop3 = map2 (fn t1 => fn t2 => (t1, fn (x, y) => mk_eq' t2 x y)) alpha_bn_trms fv_bns
val ss = HOL_ss addsimps (simps @ @{thms alphas prod_fv.simps set.simps append.simps}
@ @{thms Un_assoc Un_insert_left Un_empty_right Un_empty_left})
in
alpha_prove (alpha_trms @ alpha_bn_trms) (prop1 @ prop2 @ prop3) alpha_induct
(K (asm_full_simp_tac ss)) ctxt
end
(* respectfulness for size *)
fun raw_size_rsp_aux all_alpha_trms alpha_induct simps ctxt =
let
val arg_tys = map (domain_type o fastype_of) all_alpha_trms
fun mk_prop ty (x, y) = HOLogic.mk_eq
(HOLogic.size_const ty $ x, HOLogic.size_const ty $ y)
val props = map2 (fn trm => fn ty => (trm, mk_prop ty)) all_alpha_trms arg_tys
val ss = HOL_ss addsimps (simps @ @{thms alphas prod_alpha_def prod_rel_def
permute_prod_def prod.cases prod.recs})
val tac = (TRY o REPEAT o etac @{thm exE}) THEN' asm_full_simp_tac ss
in
alpha_prove all_alpha_trms props alpha_induct (K tac) ctxt
end
(* respectfulness for constructors *)
fun raw_constr_rsp_tac alpha_intros simps =
let
val pre_ss = HOL_ss addsimps @{thms fun_rel_def}
val post_ss = HOL_ss addsimps @{thms alphas prod_alpha_def prod_rel_def
prod_fv.simps fresh_star_zero permute_zero prod.cases} @ simps
in
asm_full_simp_tac pre_ss
THEN' REPEAT o (resolve_tac @{thms allI impI})
THEN' resolve_tac alpha_intros
THEN_ALL_NEW (TRY o (rtac exi_zero) THEN' asm_full_simp_tac post_ss)
end
fun raw_constrs_rsp constrs alpha_trms alpha_intros simps ctxt =
let
val alpha_arg_tys = map (domain_type o fastype_of) alpha_trms
fun lookup ty =
case AList.lookup (op=) (alpha_arg_tys ~~ alpha_trms) ty of
NONE => HOLogic.eq_const ty
| SOME alpha => alpha
fun fun_rel_app t1 t2 =
Const (@{const_name "fun_rel"}, dummyT) $ t1 $ t2
fun prep_goal trm =
trm
|> strip_type o fastype_of
|>> map lookup
||> lookup
|> uncurry (fold_rev fun_rel_app)
|> (fn t => t $ trm $ trm)
|> Syntax.check_term ctxt
|> HOLogic.mk_Trueprop
in
Goal.prove_multi ctxt [] [] (map prep_goal constrs)
(K (HEADGOAL
(Goal.conjunction_tac THEN_ALL_NEW raw_constr_rsp_tac alpha_intros simps)))
end
(* rsp lemmas for alpha_bn relations *)
val rsp_equivp =
@{lemma "[|equivp Q; !!x y. R x y ==> Q x y|] ==> (R ===> R ===> op =) Q Q"
by (simp only: fun_rel_def equivp_def, metis)}
(* we have to reorder the alpha_bn_imps theorems in order
to be in order with alpha_bn_trms *)
fun raw_alpha_bn_rsp alpha_bn_trms alpha_bn_equivp alpha_bn_imps =
let
fun mk_map thm =
thm |> `prop_of
|>> List.last o snd o strip_comb
|>> HOLogic.dest_Trueprop
|>> head_of
|>> fst o dest_Const
val alpha_bn_imps' =
map (lookup (map mk_map alpha_bn_imps) o fst o dest_Const) alpha_bn_trms
fun mk_thm thm1 thm2 =
(forall_intr_vars thm2) COMP (thm1 RS rsp_equivp)
in
map2 mk_thm alpha_bn_equivp alpha_bn_imps'
end
(* rsp for permute_bn functions *)
val perm_bn_rsp = @{lemma "(!x y p. R x y --> R (f p x) (f p y)) ==> (op= ===> R ===> R) f f"
by (simp add: fun_rel_def)}
fun raw_prove_perm_bn_tac pred_names alpha_intros simps ctxt =
SUBPROOF (fn {prems, context, ...} =>
let
val prems' = flat (map Datatype_Aux.split_conj_thm prems)
val prems'' = map (transform_prem1 context pred_names) prems'
in
HEADGOAL
(simp_tac (HOL_basic_ss addsimps (simps @ prems'))
THEN' TRY o REPEAT_ALL_NEW
(FIRST' [ rtac @{thm TrueI},
rtac @{thm conjI},
rtac @{thm refl},
resolve_tac prems',
resolve_tac prems'',
resolve_tac alpha_intros ]))
end) ctxt
fun raw_perm_bn_rsp alpha_trms perm_bns alpha_induct alpha_intros simps ctxt =
let
val arg_ty = domain_type o fastype_of
val perm_bn_ty = range_type o range_type o fastype_of
val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
fun mk_prop t =
let
val alpha_trm = lookup ty_assoc (perm_bn_ty t)
in
(alpha_trm, fn (x, y) => alpha_trm $ (t $ p $ x) $ (t $ p $ y))
end
val goals = map mk_prop perm_bns
val alpha_names = map (fst o dest_Const) alpha_trms
in
alpha_prove alpha_trms goals alpha_induct
(raw_prove_perm_bn_tac alpha_names alpha_intros simps) ctxt
|> ProofContext.export ctxt' ctxt
|> map atomize
|> map single
|> map (curry (op OF) perm_bn_rsp)
end
(* transformation of the natural rsp-lemmas into standard form *)
val fun_rsp = @{lemma
"(!x y. R x y --> f x = f y) ==> (R ===> (op =)) f f" by (simp add: fun_rel_def)}
fun mk_funs_rsp thm =
thm
|> atomize
|> single
|> curry (op OF) fun_rsp
val permute_rsp = @{lemma
"(!x y p. R x y --> R (permute p x) (permute p y))
==> ((op =) ===> R ===> R) permute permute" by (simp add: fun_rel_def)}
fun mk_alpha_permute_rsp thm =
thm
|> atomize
|> single
|> curry (op OF) permute_rsp
end (* structure *)