theory Quotients
imports Main
begin
(* Other quotients that have not been proved yet *)
fun
option_rel
where
"option_rel R None None = True"
| "option_rel R (Some x) None = False"
| "option_rel R None (Some x) = False"
| "option_rel R (Some x) (Some y) = R x y"
fun
option_map
where
"option_map f None = None"
| "option_map f (Some x) = Some (f x)"
fun
prod_rel
where
"prod_rel R1 R2 (a1,a2) (b1,b2) = (R1 a1 b1 \<and> R2 a2 b2)"
fun
prod_map
where
"prod_map f1 f2 (a,b) = (f1 a, f2 b)"
fun
sum_rel
where
"sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
fun
sum_map
where
"sum_map f1 f2 (Inl a) = Inl (f1 a)"
| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
fun
noption_map::"('a \<Rightarrow> 'b) \<Rightarrow> ('a noption) \<Rightarrow> ('b noption)"
where
"noption_map f (nSome x) = nSome (f x)"
| "noption_map f nNone = nNone"
fun
noption_rel
where
"noption_rel r (nSome x) (nSome y) = r x y"
| "noption_rel r _ _ = False"
declare [[map noption = (noption_map, noption_rel)]]
lemma "noption_map id = id"
sorry
lemma noption_Quotient:
assumes q: "Quotient R Abs Rep"
shows "Quotient (noption_rel R) (noption_map Abs) (noption_map Rep)"
apply (unfold Quotient_def)
apply (auto)
using q
apply (unfold Quotient_def)
apply (case_tac "a :: 'b noption")
apply (simp)
apply (simp)
apply (case_tac "a :: 'b noption")
apply (simp only: option_map.simps)
apply (subst option_rel.simps)
(* Simp starts hanging so don't know how to continue *)
sorry