(* Title: nominal_dt_alpha.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions and proofs for the alpha-relations.
*)
signature NOMINAL_DT_ALPHA =
sig
val define_raw_alpha: Datatype_Aux.descr -> (string * sort) list -> bn_info ->
bclause list list list -> term list -> Proof.context ->
term list * term list * thm list * thm list * thm * local_theory
val mk_alpha_distincts: Proof.context -> thm list -> thm list list ->
term list -> term list -> bn_info -> thm list * thm list
val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
thm list -> (thm list * thm list)
val alpha_prove: term list -> (term * ((term * term) -> term)) list -> thm ->
(Proof.context -> int -> tactic) -> Proof.context -> thm list
val raw_prove_refl: term list -> term list -> thm list -> thm -> Proof.context -> thm list
val raw_prove_sym: term list -> thm list -> thm -> Proof.context -> thm list
val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
val raw_prove_equivp: term list -> thm list -> thm list -> thm list -> Proof.context -> thm list
val raw_prove_bn_imp: term list -> term list -> thm list -> thm -> Proof.context -> thm list
val raw_fv_bn_rsp_aux: term list -> term list -> term list -> term list ->
term list -> thm -> thm list -> Proof.context -> thm list
val raw_size_rsp_aux: term list -> thm -> thm list -> Proof.context -> thm list
end
structure Nominal_Dt_Alpha: NOMINAL_DT_ALPHA =
struct
fun lookup xs x = the (AList.lookup (op=) xs x)
fun group xs = AList.group (op=) xs
(** definition of the inductive rules for alpha and alpha_bn **)
(* construct the compound terms for prod_fv and prod_alpha *)
fun mk_prod_fv (t1, t2) =
let
val ty1 = fastype_of t1
val ty2 = fastype_of t2
val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
in
Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
end
fun mk_prod_alpha (t1, t2) =
let
val ty1 = fastype_of t1
val ty2 = fastype_of t2
val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
val resT = [prodT, prodT] ---> @{typ "bool"}
in
Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
end
(* generates the compound binder terms *)
fun mk_binders lthy bmode args bodies =
let
fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
| bind_set _ args (SOME bn, i) = bn $ (nth args i)
fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
| bind_lst _ args (SOME bn, i) = bn $ (nth args i)
val (combine_fn, bind_fn) =
case bmode of
Lst => (mk_append, bind_lst)
| Set => (mk_union, bind_set)
| Res => (mk_union, bind_set)
in
bodies
|> map (bind_fn lthy args)
|> foldl1 combine_fn
end
(* produces the term for an alpha with abstraction *)
fun mk_alpha_term bmode fv alpha args args' binders binders' =
let
val (alpha_name, binder_ty) =
case bmode of
Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
| Set => (@{const_name "alpha_gen"}, @{typ "atom set"})
| Res => (@{const_name "alpha_res"}, @{typ "atom set"})
val ty = fastype_of args
val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
val alpha_ty = [ty, ty] ---> @{typ "bool"}
val fv_ty = ty --> @{typ "atom set"}
val pair_lhs = HOLogic.mk_prod (binders, args)
val pair_rhs = HOLogic.mk_prod (binders', args')
in
HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool})
$ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
end
(* for non-recursive binders we have to produce alpha_bn premises *)
fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder =
case binder of
(NONE, _) => []
| (SOME bn, i) =>
if member (op=) bodies i then []
else [lookup alpha_bn_map bn $ nth args i $ nth args' i]
(* generat the premises for an alpha rule; mk_frees is used
if no binders are present *)
fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
let
fun mk_frees i =
let
val arg = nth args i
val arg' = nth args' i
val ty = fastype_of arg
in
if nth is_rec i
then fst (lookup alpha_map ty) $ arg $ arg'
else HOLogic.mk_eq (arg, arg')
end
fun mk_alpha_fv i =
let
val ty = fastype_of (nth args i)
in
case AList.lookup (op=) alpha_map ty of
NONE => (HOLogic.eq_const ty, supp_const ty)
| SOME (alpha, fv) => (alpha, fv)
end
in
case bclause of
BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies
| BC (bmode, binders, bodies) =>
let
val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
val comp_fv = foldl1 mk_prod_fv fvs
val comp_alpha = foldl1 mk_prod_alpha alphas
val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
val comp_binders = mk_binders lthy bmode args binders
val comp_binders' = mk_binders lthy bmode args' binders
val alpha_prem =
mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
in
map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
end
end
(* produces the introduction rule for an alpha rule *)
fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_names' = Name.variant_list arg_names arg_names
val args = map Free (arg_names ~~ arg_tys)
val args' = map Free (arg_names' ~~ arg_tys)
val alpha = fst (lookup alpha_map ty)
val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
in
Library.foldr Logic.mk_implies (flat prems, concl)
end
(* produces the premise of an alpha-bn rule; we only need to
treat the case special where the binding clause is empty;
- if the body is not included in the bn_info, then we either
produce an equation or an alpha-premise
- if the body is included in the bn_info, then we create
either a recursive call to alpha-bn, or no premise *)
fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
let
fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i =
let
val arg = nth args i
val arg' = nth args' i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) alpha_map ty) of
NONE => [HOLogic.mk_eq (arg, arg')]
| SOME (alpha, _) => [alpha $ arg $ arg'])
| SOME (NONE) => []
| SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
end
in
case bclause of
BC (_, [], bodies) =>
map HOLogic.mk_Trueprop
(flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies))
| _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
end
fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_names' = Name.variant_list arg_names arg_names
val args = map Free (arg_names ~~ arg_tys)
val args' = map Free (arg_names' ~~ arg_tys)
val alpha_bn = lookup alpha_bn_map bn_trm
val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
in
Library.foldr Logic.mk_implies (flat prems, concl)
end
fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
fun define_raw_alpha descr sorts bn_info bclausesss fvs lthy =
let
val alpha_names = prefix_dt_names descr sorts "alpha_"
val alpha_arg_tys = all_dtyps descr sorts
val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) alpha_arg_tys
val alpha_frees = map Free (alpha_names ~~ alpha_tys)
val alpha_map = alpha_arg_tys ~~ (alpha_frees ~~ fvs)
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val alpha_bn_names = map (prefix "alpha_") bn_names
val alpha_bn_arg_tys = map (fn i => nth_dtyp descr sorts i) bn_tys
val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
val alpha_bn_map = bns ~~ alpha_bn_frees
val constrs_info = all_dtyp_constrs_types descr sorts
val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) constrs_info bclausesss
val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss) bn_info
val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
(alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
val (alphas, lthy') = Inductive.add_inductive_i
{quiet_mode = true, verbose = false, alt_name = Binding.empty,
coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
all_alpha_names [] all_alpha_intros [] lthy
val all_alpha_trms_loc = #preds alphas;
val alpha_induct_loc = #raw_induct alphas;
val alpha_intros_loc = #intrs alphas;
val alpha_cases_loc = #elims alphas;
val phi = ProofContext.export_morphism lthy' lthy;
val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc;
val alpha_induct = Morphism.thm phi alpha_induct_loc;
val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms
in
(alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
end
(** produces the distinctness theorems **)
(* transforms the distinctness theorems of the constructors
to "not-alphas" of the constructors *)
fun mk_alpha_distinct_goal alpha neq =
let
val (lhs, rhs) =
neq
|> HOLogic.dest_Trueprop
|> HOLogic.dest_not
|> HOLogic.dest_eq
in
alpha $ lhs $ rhs
|> HOLogic.mk_not
|> HOLogic.mk_Trueprop
end
fun distinct_tac cases distinct_thms =
rtac notI THEN' eresolve_tac cases
THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct_thms)
fun mk_alpha_distinct ctxt cases_thms (distinct_thm, alpha) =
let
val ((_, thms), ctxt') = Variable.import false distinct_thm ctxt
val goals = map (mk_alpha_distinct_goal alpha o prop_of) thms
val nrels = map (fn t => Goal.prove ctxt' [] [] t (K (distinct_tac cases_thms distinct_thm 1))) goals
in
Variable.export ctxt' ctxt nrels
end
fun mk_alpha_distincts ctxt alpha_cases constrs_distinct_thms alpha_trms alpha_bn_trms bn_infos =
let
val alpha_distincts =
map (mk_alpha_distinct ctxt alpha_cases) (constrs_distinct_thms ~~ alpha_trms)
val distinc_thms = map
val alpha_bn_distincts_aux = map (fn (_, i, _) => nth constrs_distinct_thms i) bn_infos
val alpha_bn_distincts =
map (mk_alpha_distinct ctxt alpha_cases) (alpha_bn_distincts_aux ~~ alpha_bn_trms)
in
(flat alpha_distincts, flat alpha_bn_distincts)
end
(** produces the alpha_eq_iff simplification rules **)
(* in case a theorem is of the form (C.. = C..), it will be
rewritten to ((C.. = C..) = True) *)
fun mk_simp_rule thm =
case (prop_of thm) of
@{term "Trueprop"} $ (Const (@{const_name "op ="}, _) $ _ $ _) => @{thm eqTrueI} OF [thm]
| _ => thm
fun alpha_eq_iff_tac dist_inj intros elims =
SOLVED' (asm_full_simp_tac (HOL_ss addsimps intros)) ORELSE'
(rtac @{thm iffI} THEN'
RANGE [eresolve_tac elims THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps dist_inj),
asm_full_simp_tac (HOL_ss addsimps intros)])
fun mk_alpha_eq_iff_goal thm =
let
val prop = prop_of thm;
val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop);
val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop);
fun list_conj l = foldr1 HOLogic.mk_conj l;
in
if hyps = [] then HOLogic.mk_Trueprop concl
else HOLogic.mk_Trueprop (HOLogic.mk_eq (concl, list_conj hyps))
end;
fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
let
val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
val goals = map mk_alpha_eq_iff_goal thms_imp;
val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
in
Variable.export ctxt' ctxt thms
|> `(map mk_simp_rule)
end
(** proof by induction over the alpha-definitions **)
fun is_true @{term "Trueprop True"} = true
| is_true _ = false
fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
let
val arg_tys = map (domain_type o fastype_of) alphas
val ((arg_names1, arg_names2), ctxt') =
ctxt
|> Variable.variant_fixes (replicate (length alphas) "x")
||>> Variable.variant_fixes (replicate (length alphas) "y")
val args1 = map2 (curry Free) arg_names1 arg_tys
val args2 = map2 (curry Free) arg_names2 arg_tys
val true_trms = replicate (length alphas) (K @{term True})
fun apply_all x fs = map (fn f => f x) fs
val goals_rhs =
group (props @ (alphas ~~ true_trms))
|> map snd
|> map2 apply_all (args1 ~~ args2)
|> map fold_conj
fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
val goals_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
val goals =
(map2 (curry HOLogic.mk_imp) goals_lhs goals_rhs)
|> foldr1 HOLogic.mk_conj
|> HOLogic.mk_Trueprop
fun tac ctxt =
HEADGOAL
(DETERM o (rtac alpha_induct_thm)
THEN_ALL_NEW FIRST' [rtac @{thm TrueI}, cases_tac ctxt])
in
Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
|> singleton (ProofContext.export ctxt' ctxt)
|> Datatype_Aux.split_conj_thm
|> map (fn th => th RS mp)
|> map Datatype_Aux.split_conj_thm
|> flat
|> map zero_var_indexes
|> filter_out (is_true o concl_of)
end
(** reflexivity proof for the alphas **)
val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}
fun cases_tac intros =
let
val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}
val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac
val bound_tac =
EVERY' [ rtac exi_zero,
resolve_tac @{thms alpha_refl},
asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
in
REPEAT o FIRST' [rtac @{thm conjI},
resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
end
fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
let
val arg_tys =
alpha_trms
|> map fastype_of
|> map domain_type
val arg_bn_tys =
alpha_bns
|> map fastype_of
|> map domain_type
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
val args = map Free (arg_names ~~ arg_tys)
val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
val goal =
group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
|> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts)
|> map (foldr1 HOLogic.mk_conj)
|> foldr1 HOLogic.mk_conj
|> HOLogic.mk_Trueprop
in
Goal.prove ctxt arg_names [] goal
(fn {context, ...} =>
HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros))
|> Datatype_Aux.split_conj_thm
|> map Datatype_Aux.split_conj_thm
|> flat
end
(** symmetry proof for the alphas **)
val exi_neg = @{lemma "(EX (p::perm). P p) ==> (!!q. P q ==> Q (- q)) ==> EX p. Q p"
by (erule exE, rule_tac x="-p" in exI, auto)}
(* for premises that contain binders *)
fun prem_bound_tac pred_names ctxt =
let
fun trans_prem_tac pred_names ctxt =
SUBPROOF (fn {prems, context, ...} =>
let
val prems' = map (transform_prem1 context pred_names) prems
in
resolve_tac prems' 1
end) ctxt
val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel.simps alphas}
in
EVERY'
[ etac exi_neg,
resolve_tac @{thms alpha_sym_eqvt},
asm_full_simp_tac (HOL_ss addsimps prod_simps),
Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
trans_prem_tac pred_names ctxt ]
end
fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
let
val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
fun tac ctxt =
let
val alpha_names = map (fst o dest_Const) alpha_trms
in
resolve_tac alpha_intros THEN_ALL_NEW
FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
end
in
alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt
end
(** transitivity proof for alphas **)
(* applies cases rules and resolves them with the last premise *)
fun ecases_tac cases =
Subgoal.FOCUS (fn {prems, ...} =>
HEADGOAL (resolve_tac cases THEN' rtac (List.last prems)))
fun aatac pred_names =
SUBPROOF (fn {prems, context, ...} =>
HEADGOAL (resolve_tac (map (transform_prem1 context pred_names) prems)))
(* instantiates exI with the permutation p + q *)
val perm_inst_tac =
Subgoal.FOCUS (fn {params, ...} =>
let
val (p, q) = pairself snd (last2 params)
val pq_inst = foldl1 (uncurry Thm.capply) [@{cterm "plus::perm => perm => perm"}, p, q]
val exi_inst = Drule.instantiate' [SOME (@{ctyp "perm"})] [NONE, SOME pq_inst] @{thm exI}
in
HEADGOAL (rtac exi_inst)
end)
fun non_trivial_cases_tac pred_names intros ctxt =
let
val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel.simps}
in
resolve_tac intros
THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN'
TRY o EVERY' (* if binders are present *)
[ etac @{thm exE},
etac @{thm exE},
perm_inst_tac ctxt,
resolve_tac @{thms alpha_trans_eqvt},
atac,
aatac pred_names ctxt,
Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
end
fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
let
fun all_cases ctxt =
asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms)
THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
in
EVERY' [ rtac @{thm allI}, rtac @{thm impI},
ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
end
fun prep_trans_goal alpha_trm (arg1, arg2) =
let
val arg_ty = fastype_of arg1
val mid = alpha_trm $ arg2 $ (Bound 0)
val rhs = alpha_trm $ arg1 $ (Bound 0)
in
HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
end
fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
let
val alpha_names = map (fst o dest_Const) alpha_trms
val props = map prep_trans_goal alpha_trms
val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}
in
alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
(prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
end
(** proves the equivp predicate for all alphas **)
val equivp_intro =
@{lemma "[|!x. R x x; !x y. R x y --> R y x; !x y. R x y --> (!z. R y z --> R x z)|] ==> equivp R"
by (rule equivpI, unfold reflp_def symp_def transp_def, blast+)}
fun raw_prove_equivp alphas refl symm trans ctxt =
let
val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
val refl' = map atomize refl
val symm' = map atomize symm
val trans' = map atomize trans
fun prep_goal t =
HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t)
in
Goal.prove_multi ctxt [] [] (map prep_goal alphas)
(K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac equivp_intro THEN'
RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
end
(* proves that alpha_raw implies alpha_bn *)
fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt =
SUBPROOF (fn {prems, context, ...} =>
let
val prems' = flat (map Datatype_Aux.split_conj_thm prems)
val prems'' = map (transform_prem1 context pred_names) prems'
in
HEADGOAL
(REPEAT_ALL_NEW
(FIRST' [ rtac @{thm TrueI},
rtac @{thm conjI},
resolve_tac prems',
resolve_tac prems'',
resolve_tac alpha_intros ]))
end) ctxt
fun raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct ctxt =
let
val arg_ty = domain_type o fastype_of
val alpha_names = map (fst o dest_Const) alpha_trms
val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
val props = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => t $ x $ y)) alpha_bn_trms
in
alpha_prove (alpha_trms @ alpha_bn_trms) props alpha_induct
(raw_prove_bn_imp_tac alpha_names alpha_intros) ctxt
end
(* helper lemmas for respectfulness for fv_raw / bn_raw *)
fun raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms fvs bns fv_bns alpha_induct simps ctxt =
let
val arg_ty = domain_type o fastype_of
val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
val prop1 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => HOLogic.mk_eq (t $ x, t $ y))) fvs
val prop2 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => HOLogic.mk_eq (t $ x, t $ y))) bns
val prop3 = map2 (fn t1 => fn t2 => (t1, fn (x, y) => HOLogic.mk_eq (t2 $ x, t2 $ y))) alpha_bn_trms fv_bns
val ss = HOL_ss addsimps (simps @ @{thms alphas prod_fv.simps set.simps append.simps}
@ @{thms Un_assoc Un_insert_left Un_empty_right Un_empty_left})
in
alpha_prove (alpha_trms @ alpha_bn_trms) (prop1 @ prop2 @ prop3) alpha_induct
(K (asm_full_simp_tac ss)) ctxt
end
(* helper lemmas for respectfulness for size *)
fun raw_size_rsp_aux all_alpha_trms alpha_induct simps ctxt =
let
val arg_tys = map (domain_type o fastype_of) all_alpha_trms
fun mk_prop ty (x, y) = HOLogic.mk_eq
(HOLogic.size_const ty $ x, HOLogic.size_const ty $ y)
val props = map2 (fn trm => fn ty => (trm, mk_prop ty)) all_alpha_trms arg_tys
val ss = HOL_ss addsimps (simps @ @{thms alphas prod_alpha_def prod_rel.simps
permute_prod_def prod.cases prod.recs})
val tac = (TRY o REPEAT o etac @{thm exE}) THEN' asm_full_simp_tac ss
in
alpha_prove all_alpha_trms props alpha_induct (K tac) ctxt
end
end (* structure *)