Clean 'Lift', start working only on exported things in Parser.
theory Term6
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" "../Attic/Prove"
begin
atom_decl name
(* example with a bn function defined over the type itself, NOT respectful. *)
datatype rtrm6 =
rVr6 "name"
| rLm6 "name" "rtrm6" --"bind name in rtrm6"
| rLt6 "rtrm6" "rtrm6" --"bind (bv6 left) in (right)"
primrec
rbv6
where
"rbv6 (rVr6 n) = {}"
| "rbv6 (rLm6 n t) = {atom n} \<union> rbv6 t"
| "rbv6 (rLt6 l r) = rbv6 l \<union> rbv6 r"
setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term6.rtrm6") 1 *}
print_theorems
local_setup {* snd o define_fv_alpha (Datatype.the_info @{theory} "Term6.rtrm6") [
[[], [(NONE, 0, 1)], [(SOME @{term rbv6}, 0, 1)]]] *}
notation alpha_rtrm6 ("_ \<approx>6 _" [100, 100] 100)
thm alpha_rtrm6.intros
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha6_inj}, []), (build_alpha_inj @{thms alpha_rtrm6.intros} @{thms rtrm6.distinct rtrm6.inject} @{thms alpha_rtrm6.cases} ctxt)) ctxt)) *}
thm alpha6_inj
local_setup {*
snd o (build_eqvts @{binding rbv6_eqvt} [@{term rbv6}] [@{term "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"}] (@{thms rbv6.simps permute_rtrm6.simps}) @{thm rtrm6.induct})
*}
local_setup {*
snd o build_eqvts @{binding fv_rtrm6_eqvt} [@{term fv_rtrm6}] [@{term "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"}] (@{thms fv_rtrm6.simps permute_rtrm6.simps}) @{thm rtrm6.induct}
*}
local_setup {*
(fn ctxt => snd (Local_Theory.note ((@{binding alpha6_eqvt}, []),
build_alpha_eqvts [@{term alpha_rtrm6}] [@{term "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"}] @{thms permute_rtrm6.simps alpha6_inj} @{thm alpha_rtrm6.induct} ctxt) ctxt))
*}
thm alpha6_eqvt
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha6_equivp}, []),
(build_equivps [@{term alpha_rtrm6}] @{thm rtrm6.induct} @{thm alpha_rtrm6.induct} @{thms rtrm6.inject} @{thms alpha6_inj} @{thms rtrm6.distinct} @{thms alpha_rtrm6.cases} @{thms alpha6_eqvt} ctxt)) ctxt)) *}
thm alpha6_equivp
quotient_type
trm6 = rtrm6 / alpha_rtrm6
by (auto intro: alpha6_equivp)
local_setup {*
(fn ctxt => ctxt
|> snd o (Quotient_Def.quotient_lift_const ("Vr6", @{term rVr6}))
|> snd o (Quotient_Def.quotient_lift_const ("Lm6", @{term rLm6}))
|> snd o (Quotient_Def.quotient_lift_const ("Lt6", @{term rLt6}))
|> snd o (Quotient_Def.quotient_lift_const ("fv_trm6", @{term fv_rtrm6}))
|> snd o (Quotient_Def.quotient_lift_const ("bv6", @{term rbv6})))
*}
print_theorems
lemma [quot_respect]:
"(op = ===> alpha_rtrm6 ===> alpha_rtrm6) permute permute"
by (auto simp add: alpha6_eqvt)
(* Definitely not true , see lemma below *)
lemma [quot_respect]:"(alpha_rtrm6 ===> op =) rbv6 rbv6"
apply simp apply clarify
apply (erule alpha_rtrm6.induct)
oops
lemma "(a :: name) \<noteq> b \<Longrightarrow> \<not> (alpha_rtrm6 ===> op =) rbv6 rbv6"
apply simp
apply (rule_tac x="rLm6 (a::name) (rVr6 (a :: name))" in exI)
apply (rule_tac x="rLm6 (b::name) (rVr6 (b :: name))" in exI)
apply simp
apply (simp add: alpha6_inj)
apply (rule_tac x="(a \<leftrightarrow> b)" in exI)
apply (simp add: alpha_gen fresh_star_def)
apply (simp add: alpha6_inj)
done
lemma fv6_rsp: "x \<approx>6 y \<Longrightarrow> fv_rtrm6 x = fv_rtrm6 y"
apply (induct_tac x y rule: alpha_rtrm6.induct)
apply simp_all
apply (erule exE)
apply (simp_all add: alpha_gen)
done
lemma [quot_respect]:"(alpha_rtrm6 ===> op =) fv_rtrm6 fv_rtrm6"
by (simp add: fv6_rsp)
lemma [quot_respect]:
"(op = ===> alpha_rtrm6) rVr6 rVr6"
"(op = ===> alpha_rtrm6 ===> alpha_rtrm6) rLm6 rLm6"
apply auto
apply (simp_all add: alpha6_inj)
apply (rule_tac x="0::perm" in exI)
apply (simp add: alpha_gen fv6_rsp fresh_star_def fresh_zero_perm)
done
lemma [quot_respect]:
"(alpha_rtrm6 ===> alpha_rtrm6 ===> alpha_rtrm6) rLt6 rLt6"
apply auto
apply (simp_all add: alpha6_inj)
apply (rule_tac [!] x="0::perm" in exI)
apply (simp_all add: alpha_gen fresh_star_def fresh_zero_perm)
(* needs rbv6_rsp *)
oops
instantiation trm6 :: pt begin
quotient_definition
"permute_trm6 :: perm \<Rightarrow> trm6 \<Rightarrow> trm6"
is
"permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"
instance
apply default
sorry
end
lemma lifted_induct:
"\<lbrakk>x1 = x2; \<And>name namea. name = namea \<Longrightarrow> P (Vr6 name) (Vr6 namea);
\<And>name rtrm6 namea rtrm6a.
\<lbrakk>True;
\<exists>pi. fv_trm6 rtrm6 - {atom name} = fv_trm6 rtrm6a - {atom namea} \<and>
(fv_trm6 rtrm6 - {atom name}) \<sharp>* pi \<and> pi \<bullet> rtrm6 = rtrm6a \<and> P (pi \<bullet> rtrm6) rtrm6a\<rbrakk>
\<Longrightarrow> P (Lm6 name rtrm6) (Lm6 namea rtrm6a);
\<And>rtrm61 rtrm61a rtrm62 rtrm62a.
\<lbrakk>rtrm61 = rtrm61a; P rtrm61 rtrm61a;
\<exists>pi. fv_trm6 rtrm62 - bv6 rtrm61 = fv_trm6 rtrm62a - bv6 rtrm61a \<and>
(fv_trm6 rtrm62 - bv6 rtrm61) \<sharp>* pi \<and> pi \<bullet> rtrm62 = rtrm62a \<and> P (pi \<bullet> rtrm62) rtrm62a\<rbrakk>
\<Longrightarrow> P (Lt6 rtrm61 rtrm62) (Lt6 rtrm61a rtrm62a)\<rbrakk>
\<Longrightarrow> P x1 x2"
apply (lifting alpha_rtrm6.induct[unfolded alpha_gen])
apply injection
(* notice unsolvable goals: (alpha_rtrm6 ===> op =) rbv6 rbv6 *)
oops
lemma lifted_inject_a3:
"(Lt6 rtrm61 rtrm62 = Lt6 rtrm61a rtrm62a) =
(rtrm61 = rtrm61a \<and>
(\<exists>pi. fv_trm6 rtrm62 - bv6 rtrm61 = fv_trm6 rtrm62a - bv6 rtrm61a \<and>
(fv_trm6 rtrm62 - bv6 rtrm61) \<sharp>* pi \<and> pi \<bullet> rtrm62 = rtrm62a))"
apply(lifting alpha6_inj(3)[unfolded alpha_gen])
apply injection
(* notice unsolvable goals: (alpha_rtrm6 ===> op =) rbv6 rbv6 *)
oops
end