(* Title: nominal_dt_rawfuns.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions of the raw fv, fv_bn and permute functions.
*)
signature NOMINAL_DT_RAWFUNS =
sig
(* info of raw datatypes *)
type dt_info = (string list * binding * mixfix * ((binding * typ list * mixfix) list)) list
(* info of raw binding functions *)
type bn_info = term * int * (int * term option) list list
(* binding modes and binding clauses *)
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
val get_all_binders: bclause list -> (term option * int) list
val is_recursive_binder: bclause -> bool
val define_raw_bns: string list -> dt_info -> (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> thm list -> thm list -> local_theory ->
(term list * thm list * bn_info list * thm list * local_theory)
val define_raw_fvs: string list -> typ list -> cns_info list -> bn_info list -> bclause list list list ->
thm list -> thm list -> Proof.context -> term list * term list * thm list * thm list * local_theory
val define_raw_bn_perms: typ list -> bn_info list -> cns_info list -> thm list -> thm list ->
local_theory -> (term list * thm list * local_theory)
val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list
val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm ->
local_theory -> (term list * thm list * thm list) * local_theory
end
structure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =
struct
(* string list - type variables of a datatype
binding - name of the datatype
mixfix - its mixfix
(binding * typ list * mixfix) list - datatype constructors of the type
*)
type dt_info = (string list * binding * mixfix * ((binding * typ list * mixfix) list)) list
(* term - is constant of the bn-function
int - is datatype number over which the bn-function is defined
int * term option - is number of the corresponding argument with possibly
recursive call with bn-function term
*)
type bn_info = term * int * (int * term option) list list
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
fun get_all_binders bclauses =
bclauses
|> map (fn (BC (_, binders, _)) => binders)
|> flat
|> remove_dups (op =)
fun is_recursive_binder (BC (_, binders, bodies)) =
case (inter (op =) (map snd binders) bodies) of
nil => false
| _ => true
fun lookup xs x = the (AList.lookup (op=) xs x)
(** functions that define the raw binding functions **)
(* strip_bn_fun takes a rhs of a bn function: this can only contain unions or
appends of elements; in case of recursive calls it returns also the applied
bn function *)
fun strip_bn_fun lthy args t =
let
fun aux t =
case t of
Const (@{const_name sup}, _) $ l $ r => aux l @ aux r
| Const (@{const_name append}, _) $ l $ r => aux l @ aux r
| Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ (x as Var _)) $ y =>
(find_index (equal x) args, NONE) :: aux y
| Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ (x as Var _)) $ y =>
(find_index (equal x) args, NONE) :: aux y
| Const (@{const_name bot}, _) => []
| Const (@{const_name Nil}, _) => []
| (f as Const _) $ (x as Var _) => [(find_index (equal x) args, SOME f)]
| _ => error ("Unsupported binding function: " ^ (Syntax.string_of_term lthy t))
in
aux t
end
(** definition of the raw binding functions **)
fun prep_bn_info lthy dt_names dts bn_funs eqs =
let
fun process_eq eq =
let
val (lhs, rhs) = eq
|> HOLogic.dest_Trueprop
|> HOLogic.dest_eq
val (bn_fun, [cnstr]) = strip_comb lhs
val (_, ty) = dest_Const bn_fun
val (ty_name, _) = dest_Type (domain_type ty)
val dt_index = find_index (fn x => x = ty_name) dt_names
val (cnstr_head, cnstr_args) = strip_comb cnstr
val cnstr_name = Long_Name.base_name (fst (dest_Const cnstr_head))
val rhs_elements = strip_bn_fun lthy cnstr_args rhs
in
((bn_fun, dt_index), (cnstr_name, rhs_elements))
end
(* order according to constructor names *)
fun cntrs_order ((bn, dt_index), data) =
let
val dt = nth dts dt_index
val cts = (fn (_, _, _, x) => x) dt
val ct_names = map (Binding.name_of o (fn (x, _, _) => x)) cts
in
(bn, (bn, dt_index, order (op=) ct_names data))
end
in
eqs
|> map process_eq
|> AList.group (op=) (* eqs grouped according to bn_functions *)
|> map cntrs_order (* inner data ordered according to constructors *)
|> order (op=) bn_funs (* ordered according to bn_functions *)
end
fun define_raw_bns dt_names dts raw_bn_funs raw_bn_eqs constr_thms size_thms lthy =
if null raw_bn_funs
then ([], [], [], [], lthy)
else
let
val (_, lthy1) = Function.add_function raw_bn_funs raw_bn_eqs
Function_Common.default_config (pat_completeness_simp constr_thms) lthy
val (info, lthy2) = prove_termination_fun size_thms (Local_Theory.restore lthy1)
val {fs, simps, inducts, ...} = info
val raw_bn_induct = (the inducts)
val raw_bn_eqs = the simps
val raw_bn_info =
prep_bn_info lthy dt_names dts fs (map prop_of raw_bn_eqs)
in
(fs, raw_bn_eqs, raw_bn_info, raw_bn_induct, lthy2)
end
(** functions that construct the equations for fv and fv_bn **)
fun mk_fv_rhs lthy fv_map fv_bn_map args (BC (bmode, binders, bodies)) =
let
fun mk_fv_body fv_map args i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) fv_map ty of
NONE => mk_supp arg
| SOME fv => fv $ arg
end
fun mk_fv_binder lthy fv_bn_map args binders =
let
fun bind_set lthy args (NONE, i) = (setify lthy (nth args i), @{term "{}::atom set"})
| bind_set _ args (SOME bn, i) = (bn $ (nth args i),
if member (op=) bodies i then @{term "{}::atom set"}
else lookup fv_bn_map bn $ (nth args i))
fun bind_lst lthy args (NONE, i) = (listify lthy (nth args i), @{term "[]::atom list"})
| bind_lst _ args (SOME bn, i) = (bn $ (nth args i),
if member (op=) bodies i then @{term "[]::atom list"}
else lookup fv_bn_map bn $ (nth args i))
val (combine_fn, bind_fn) =
case bmode of
Lst => (fold_append, bind_lst)
| Set => (fold_union, bind_set)
| Res => (fold_union, bind_set)
in
binders
|> map (bind_fn lthy args)
|> split_list
|> pairself combine_fn
end
val t1 = map (mk_fv_body fv_map args) bodies
val (t2, t3) = mk_fv_binder lthy fv_bn_map args binders
in
mk_union (mk_diff (fold_union t1, to_set t2), to_set t3)
end
(* in case of fv_bn we have to treat the case special, where an
"empty" binding clause is given *)
fun mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause =
let
fun mk_fv_bn_body i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) fv_map ty) of
NONE => mk_supp arg
| SOME fv => fv $ arg)
| SOME (NONE) => @{term "{}::atom set"}
| SOME (SOME bn) => lookup fv_bn_map bn $ arg
end
in
case bclause of
BC (_, [], bodies) => fold_union (map mk_fv_bn_body bodies)
| _ => mk_fv_rhs lthy fv_map fv_bn_map args bclause
end
fun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys, _) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv = lookup fv_map ty
val lhs = fv $ list_comb (constr, args)
val rhs_trms = map (mk_fv_rhs lthy fv_map fv_bn_map args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys, _)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv_bn = lookup fv_bn_map bn_trm
val lhs = fv_bn $ list_comb (constr, args)
val rhs_trms = map (mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
fun define_raw_fvs raw_full_ty_names raw_tys cns_info bn_info bclausesss constr_thms size_simps lthy =
let
val fv_names = map (prefix "fv_" o Long_Name.base_name) raw_full_ty_names
val fv_tys = map (fn ty => ty --> @{typ "atom set"}) raw_tys
val fv_frees = map Free (fv_names ~~ fv_tys);
val fv_map = raw_tys ~~ fv_frees
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val fv_bn_names = map (prefix "fv_") bn_names
val fv_bn_arg_tys = map (nth raw_tys) bn_tys
val fv_bn_tys = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys
val fv_bn_frees = map Free (fv_bn_names ~~ fv_bn_tys)
val fv_bn_map = bns ~~ fv_bn_frees
val fv_eqs = map2 (map2 (mk_fv_eq lthy fv_map fv_bn_map)) cns_info bclausesss
val fv_bn_eqs = map (mk_fv_bn_eqs lthy fv_map fv_bn_map cns_info bclausesss) bn_info
val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names)
val all_fun_eqs = map (pair Attrib.empty_binding) (flat fv_eqs @ flat fv_bn_eqs)
val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
Function_Common.default_config (pat_completeness_simp constr_thms) lthy
val (info, lthy'') = prove_termination_fun size_simps (Local_Theory.restore lthy')
val {fs, simps, inducts, ...} = info;
val morphism = ProofContext.export_morphism lthy'' lthy
val simps_exp = map (Morphism.thm morphism) (the simps)
val inducts_exp = map (Morphism.thm morphism) (the inducts)
val (fvs', fv_bns') = chop (length fv_frees) fs
in
(fvs', fv_bns', simps_exp, inducts_exp, lthy'')
end
(** definition of raw permute_bn functions **)
fun mk_perm_bn_eq_rhs p perm_bn_map bn_args (i, arg) =
case AList.lookup (op=) bn_args i of
NONE => arg
| SOME (NONE) => mk_perm p arg
| SOME (SOME bn) => (lookup perm_bn_map bn) $ p $ arg
fun mk_perm_bn_eq lthy bn_trm perm_bn_map bn_args (constr, _, arg_tys, _) =
let
val p = Free ("p", @{typ perm})
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val perm_bn = lookup perm_bn_map bn_trm
val lhs = perm_bn $ p $ list_comb (constr, args)
val rhs = list_comb (constr, map_index (mk_perm_bn_eq_rhs p perm_bn_map bn_args) args)
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_perm_bn_eqs lthy perm_bn_map cns_info (bn_trm, bn_n, bn_argss) =
let
val nth_cns_info = nth cns_info bn_n
in
map2 (mk_perm_bn_eq lthy bn_trm perm_bn_map) bn_argss nth_cns_info
end
fun define_raw_bn_perms raw_tys bn_info cns_info cns_thms size_thms lthy =
if null bn_info
then ([], [], lthy)
else
let
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val perm_bn_names = map (prefix "permute_") bn_names
val perm_bn_arg_tys = map (nth raw_tys) bn_tys
val perm_bn_tys = map (fn ty => @{typ "perm"} --> ty --> ty) perm_bn_arg_tys
val perm_bn_frees = map Free (perm_bn_names ~~ perm_bn_tys)
val perm_bn_map = bns ~~ perm_bn_frees
val perm_bn_eqs = map (mk_perm_bn_eqs lthy perm_bn_map cns_info) bn_info
val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) perm_bn_names
val all_fun_eqs = map (pair Attrib.empty_binding) (flat perm_bn_eqs)
val prod_simps = @{thms prod.inject HOL.simp_thms}
val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
Function_Common.default_config (pat_completeness_simp (prod_simps @ cns_thms)) lthy
val (info, lthy'') = prove_termination_fun size_thms (Local_Theory.restore lthy')
val {fs, simps, ...} = info;
val morphism = ProofContext.export_morphism lthy'' lthy
val simps_exp = map (Morphism.thm morphism) (the simps)
in
(fs, simps_exp, lthy'')
end
(** equivarance proofs **)
val eqvt_apply_sym = @{thm eqvt_apply[symmetric]}
fun subproof_tac const_names simps =
SUBPROOF (fn {prems, context, ...} =>
HEADGOAL
(simp_tac (HOL_basic_ss addsimps simps)
THEN' Nominal_Permeq.eqvt_tac context [] const_names
THEN' simp_tac (HOL_basic_ss addsimps (prems @ [eqvt_apply_sym]))))
fun prove_eqvt_tac insts ind_thms const_names simps ctxt =
HEADGOAL
(Object_Logic.full_atomize_tac
THEN' (DETERM o (InductTacs.induct_rules_tac ctxt insts ind_thms))
THEN_ALL_NEW subproof_tac const_names simps ctxt)
fun mk_eqvt_goal pi const arg =
let
val lhs = mk_perm pi (const $ arg)
val rhs = const $ (mk_perm pi arg)
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun raw_prove_eqvt consts ind_thms simps ctxt =
if null consts then []
else
let
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
val arg_tys =
consts
|> map fastype_of
|> map domain_type
val (arg_names, ctxt'') =
Variable.variant_fixes (Datatype_Prop.make_tnames arg_tys) ctxt'
val args = map Free (arg_names ~~ arg_tys)
val goals = map2 (mk_eqvt_goal p) consts args
val insts = map (single o SOME) arg_names
val const_names = map (fst o dest_Const) consts
in
Goal.prove_multi ctxt'' [] [] goals (fn {context, ...} =>
prove_eqvt_tac insts ind_thms const_names simps context)
|> ProofContext.export ctxt'' ctxt
end
(*** raw permutation functions ***)
(** proves the two pt-type class properties **)
fun prove_permute_zero induct perm_defs perm_fns lthy =
let
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) =
HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy perm_indnames [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun prove_permute_plus induct perm_defs perm_fns lthy =
let
val p = Free ("p", @{typ perm})
val q = Free ("q", @{typ perm})
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq
(perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun mk_perm_eq ty_perm_assoc cnstr =
let
fun lookup_perm p (ty, arg) =
case (AList.lookup (op=) ty_perm_assoc ty) of
SOME perm => perm $ p $ arg
| NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
val p = Free ("p", @{typ perm})
val (arg_tys, ty) =
fastype_of cnstr
|> strip_type
val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
val args = map Free (arg_names ~~ arg_tys)
val lhs = lookup_perm p (ty, list_comb (cnstr, args))
val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
in
(Attrib.empty_binding, eq)
end
fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy =
let
val perm_fn_names = full_ty_names
|> map Long_Name.base_name
|> map (prefix "permute_")
val perm_fn_types = map perm_ty tys
val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
fun tac _ (_, _, simps) =
Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
fun morphism phi (fvs, dfs, simps) =
(map (Morphism.term phi) fvs,
map (Morphism.thm phi) dfs,
map (Morphism.thm phi) simps);
val ((perm_funs, perm_eq_thms), lthy') =
lthy
|> Local_Theory.exit_global
|> Class.instantiation (full_ty_names, tvs, @{sort pt})
|> Primrec.add_primrec perm_fn_binds perm_eqs
val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy'
val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy'
in
lthy'
|> Class.prove_instantiation_exit_result morphism tac
(perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
||> Named_Target.theory_init
end
end (* structure *)