theory LamEx
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../QuotMain"
begin
datatype 'a ABS_raw = Abs_raw "atom list" "'a::pt"
primrec
Abs_raw_map
where
"Abs_raw_map f (Abs_raw as x) = Abs_raw as (f x)"
fun
Abs_raw_rel
where
"Abs_raw_rel R (Abs_raw as x) (Abs_raw bs y) = R x y"
declare [[map "ABS_raw" = (Abs_raw_map, Abs_raw_rel)]]
instantiation ABS_raw :: (pt) pt
begin
primrec
permute_ABS_raw
where
"permute_ABS_raw p (Abs_raw as x) = Abs_raw (p \<bullet> as) (p \<bullet> x)"
instance
apply(default)
apply(case_tac [!] x)
apply(simp_all)
done
end
inductive
alpha_abs :: "('a::pt) ABS_raw \<Rightarrow> 'a ABS_raw \<Rightarrow> bool"
where
"\<lbrakk>\<exists>pi. (supp x) - (set as) = (supp y) - (set bs) \<and> ((supp x) - (set as)) \<sharp>* pi \<and> pi \<bullet> x = y\<rbrakk>
\<Longrightarrow> alpha_abs (Abs_raw as x) (Abs_raw bs y)"
lemma Abs_raw_eq1:
assumes "alpha_abs (Abs_raw bs x) (Abs_raw bs y)"
shows "x = y"
using assms
apply(erule_tac alpha_abs.cases)
apply(auto)
apply(drule sym)
apply(simp)
sorry
quotient_type 'a ABS = "('a::pt) ABS_raw" / "alpha_abs::('a::pt) ABS_raw \<Rightarrow> 'a ABS_raw \<Rightarrow> bool"
sorry
quotient_definition
"Abs::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a ABS"
as
"Abs_raw"
lemma [quot_respect]:
shows "((op =) ===> (op =) ===> alpha_abs) Abs_raw Abs_raw"
apply(auto)
apply(rule alpha_abs.intros)
apply(rule_tac x="0" in exI)
apply(simp add: fresh_star_def fresh_zero_perm)
done
lemma [quot_respect]:
shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
apply(auto)
sorry
lemma ABS_induct:
"\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
apply(lifting ABS_raw.induct)
done
lemma Abs_eq1:
assumes "(Abs bs x) = (Abs bs y)"
shows "x = y"
using assms
apply(lifting Abs_raw_eq1)
done
instantiation ABS :: (pt) pt
begin
quotient_definition
"permute_ABS::perm \<Rightarrow> ('a::pt ABS) \<Rightarrow> 'a ABS"
as
"permute::perm \<Rightarrow> ('a::pt ABS_raw) \<Rightarrow> 'a ABS_raw"
lemma permute_ABS [simp]:
fixes x::"'b::pt" (* ??? has to be 'b \<dots> 'a doe not work *)
shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
apply(lifting permute_ABS_raw.simps(1))
done
instance
apply(default)
apply(induct_tac [!] x rule: ABS_induct)
apply(simp_all)
done
end
lemma Abs_supports:
shows "(supp (as, x)) supports (Abs as x) "
unfolding supports_def
unfolding fresh_def[symmetric]
apply(simp add: fresh_Pair swap_fresh_fresh)
done
instance ABS :: (fs) fs
apply(default)
apply(induct_tac x rule: ABS_induct)
thm supports_finite
apply(rule supports_finite)
apply(rule Abs_supports)
apply(simp add: supp_Pair finite_supp)
done
lemma Abs_fresh1:
fixes x::"'a::fs"
assumes a1: "a \<sharp> bs"
and a2: "a \<sharp> x"
shows "a \<sharp> Abs bs x"
proof -
obtain c where
fr: "c \<sharp> bs" "c \<sharp> x" "c \<sharp> Abs bs x" "sort_of c = sort_of a"
apply(rule_tac X="supp (bs, x, Abs bs x)" in obtain_atom)
unfolding fresh_def[symmetric]
apply(auto simp add: supp_Pair finite_supp fresh_Pair fresh_atom)
done
have "(c \<rightleftharpoons> a) \<bullet> (Abs bs x) = Abs bs x" using a1 a2 fr(1) fr(2)
by (simp add: swap_fresh_fresh)
moreover from fr(3)
have "((c \<rightleftharpoons> a) \<bullet> c) \<sharp> ((c \<rightleftharpoons> a) \<bullet>(Abs bs x))"
by (simp only: fresh_permute_iff)
ultimately show "a \<sharp> Abs bs x" using fr(4)
by simp
qed
lemma Abs_fresh2:
fixes x :: "'a::fs"
assumes a1: "a \<sharp> Abs bs x"
and a2: "a \<sharp> bs"
shows "a \<sharp> x"
proof -
obtain c where
fr: "c \<sharp> bs" "c \<sharp> x" "c \<sharp> Abs bs x" "sort_of c = sort_of a"
apply(rule_tac X="supp (bs, x, Abs bs x)" in obtain_atom)
unfolding fresh_def[symmetric]
apply(auto simp add: supp_Pair finite_supp fresh_Pair fresh_atom)
done
have "Abs bs x = (c \<rightleftharpoons> a) \<bullet> (Abs bs x)" using a1 fr(3)
by (simp only: swap_fresh_fresh)
also have "\<dots> = Abs bs ((c \<rightleftharpoons> a) \<bullet> x)" using a2 fr(1)
by (simp add: swap_fresh_fresh)
ultimately have "Abs bs x = Abs bs ((c \<rightleftharpoons> a) \<bullet> x)" by simp
then have "x = (c \<rightleftharpoons> a) \<bullet> x" by (rule Abs_eq1)
moreover from fr(2)
have "((c \<rightleftharpoons> a) \<bullet> c) \<sharp> ((c \<rightleftharpoons> a) \<bullet> x)"
by (simp only: fresh_permute_iff)
ultimately show "a \<sharp> x" using fr(4)
by simp
qed
lemma Abs_fresh3:
fixes x :: "'a::fs"
assumes "a \<in> set bs"
shows "a \<sharp> Abs bs x"
proof -
obtain c where
fr: "c \<sharp> a" "c \<sharp> x" "c \<sharp> Abs bs x" "sort_of c = sort_of a"
apply(rule_tac X="supp (a, x, Abs bs x)" in obtain_atom)
unfolding fresh_def[symmetric]
apply(auto simp add: supp_Pair finite_supp fresh_Pair fresh_atom)
done
from fr(3) have "((c \<rightleftharpoons> a) \<bullet> c) \<sharp> ((c \<rightleftharpoons> a) \<bullet> Abs bs x)"
by (simp only: fresh_permute_iff)
moreover
have "((c \<rightleftharpoons> a) \<bullet> Abs bs x) = Abs bs x" using assms fr(1) fr(2) sorry
ultimately
show "a \<sharp> Abs bs x" using fr(4) by simp
qed
done