Nominal/nominal_eqvt.ML
author Christian Urban <urbanc@in.tum.de>
Fri, 04 Feb 2011 03:52:38 +0000
changeset 2718 8c1cda7ec284
parent 2650 e5fa8de0e4bd
child 2765 7ac5e5c86c7d
permissions -rw-r--r--
Lambda.thy which works with Nominal_Isabelle2011

(*  Title:      nominal_eqvt.ML
    Author:     Stefan Berghofer (original code)
    Author:     Christian Urban

    Automatic proofs for equivariance of inductive predicates.
*)

signature NOMINAL_EQVT =
sig
  val eqvt_rel_tac: Proof.context -> string list -> term -> thm -> thm list -> int -> tactic
  val eqvt_rel_single_case_tac: Proof.context -> string list -> term -> thm -> int -> tactic
  
  val raw_equivariance: bool -> term list -> thm -> thm list -> Proof.context -> thm list * local_theory
  val equivariance: string -> Proof.context -> (thm list * local_theory)
  val equivariance_cmd: string -> Proof.context -> local_theory
end

structure Nominal_Eqvt : NOMINAL_EQVT =
struct

open Nominal_Permeq;
open Nominal_ThmDecls;

val atomize_conv = 
  Raw_Simplifier.rewrite_cterm (true, false, false) (K (K NONE))
    (HOL_basic_ss addsimps @{thms induct_atomize});
val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv);
fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1
  (Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt));


(** equivariance tactics **)

val perm_boolE = @{thm permute_boolE}
val perm_cancel = @{thms permute_minus_cancel(2)}

fun eqvt_rel_single_case_tac ctxt pred_names pi intro  = 
  let
    val thy = ProofContext.theory_of ctxt
    val cpi = Thm.cterm_of thy (mk_minus pi)
    val pi_intro_rule = Drule.instantiate' [] [SOME cpi] perm_boolE
    val simps1 = HOL_basic_ss addsimps @{thms permute_fun_def minus_minus split_paired_all}
    val simps2 = HOL_basic_ss addsimps @{thms permute_bool_def}
  in
    eqvt_strict_tac ctxt [] pred_names THEN'
    SUBPROOF (fn {prems, context as ctxt, ...} =>
      let
        val prems' = map (transform_prem2 ctxt pred_names) prems
        val tac1 = resolve_tac prems'
        val tac2 = EVERY' [ rtac pi_intro_rule, 
          eqvt_strict_tac ctxt perm_cancel pred_names, resolve_tac prems' ]
        val tac3 = EVERY' [ rtac pi_intro_rule, 
          eqvt_strict_tac ctxt perm_cancel pred_names, simp_tac simps1, 
          simp_tac simps2, resolve_tac prems']
      in
        (rtac intro THEN_ALL_NEW FIRST' [tac1, tac2, tac3]) 1 
      end) ctxt
  end

fun eqvt_rel_tac ctxt pred_names pi induct intros =
  let
    val cases = map (eqvt_rel_single_case_tac ctxt pred_names pi) intros
  in
    EVERY' ((DETERM o rtac induct) :: cases)
  end


(** equivariance procedure *)

fun prepare_goal pi pred =
  let
    val (c, xs) = strip_comb pred;
  in
    HOLogic.mk_imp (pred, list_comb (c, map (mk_perm pi) xs))
  end

(* stores thm under name.eqvt and adds [eqvt]-attribute *)

fun note_named_thm (name, thm) ctxt = 
  let
    val thm_name = Binding.qualified_name 
      (Long_Name.qualify (Long_Name.base_name name) "eqvt")
    val attr = Attrib.internal (K eqvt_add)
    val ((_, [thm']), ctxt') =  Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
  in
    (thm', ctxt')
  end

fun get_name (Const (a, _)) = a
  | get_name (Free  (a, _)) = a

fun raw_equivariance note_flag pred_trms raw_induct intrs ctxt = 
  let
    val is_already_eqvt = 
      filter (is_eqvt ctxt) pred_trms
      |> map (Syntax.string_of_term ctxt)
    val _ = if null is_already_eqvt then ()
      else error ("Already equivariant: " ^ commas is_already_eqvt)

    val pred_names = map get_name pred_trms
    val raw_induct' = atomize_induct ctxt raw_induct
    val intrs' = map atomize_intr intrs
  
    val (([raw_concl], [raw_pi]), ctxt') = 
      ctxt 
      |> Variable.import_terms false [concl_of raw_induct'] 
      ||>> Variable.variant_fixes ["p"]
    val pi = Free (raw_pi, @{typ perm})
  
    val preds = map (fst o HOLogic.dest_imp)
      (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
  
    val goal = HOLogic.mk_Trueprop 
      (foldr1 HOLogic.mk_conj (map (prepare_goal pi) preds))
  
    val thms = Goal.prove ctxt' [] [] goal 
      (fn {context,...} => eqvt_rel_tac context pred_names pi raw_induct' intrs' 1)
      |> Datatype_Aux.split_conj_thm 
      |> ProofContext.export ctxt' ctxt
      |> map (fn th => th RS mp)
      |> map zero_var_indexes
  in
    if note_flag
    then fold_map note_named_thm (pred_names ~~ thms) ctxt 
    else (thms, ctxt) 
  end

fun equivariance pred_name ctxt =
  let
    val thy = ProofContext.theory_of ctxt
    val (_, {preds, raw_induct, intrs, ...}) =
      Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
  in
    raw_equivariance false preds raw_induct intrs ctxt 
  end

fun equivariance_cmd pred_name ctxt =
  let
    val thy = ProofContext.theory_of ctxt
    val (_, {preds, raw_induct, intrs, ...}) =
      Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
  in
    raw_equivariance true preds raw_induct intrs ctxt |> snd
  end

local structure P = Parse and K = Keyword in

val _ =
  Outer_Syntax.local_theory "equivariance"
    "Proves equivariance for inductive predicate involving nominal datatypes." 
      K.thy_decl (P.xname >> equivariance_cmd);

end;

end (* structure *)