Finite_support proof no longer needed in LF.
theory Term5
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" "../Attic/Prove"
begin
atom_decl name
datatype rtrm5 =
rVr5 "name"
| rAp5 "rtrm5" "rtrm5"
| rLt5 "rlts" "rtrm5" --"bind (bv5 lts) in (rtrm5)"
and rlts =
rLnil
| rLcons "name" "rtrm5" "rlts"
primrec
rbv5
where
"rbv5 rLnil = {}"
| "rbv5 (rLcons n t ltl) = {atom n} \<union> (rbv5 ltl)"
setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term5.rtrm5") 2 *}
print_theorems
local_setup {* snd o define_fv_alpha (Datatype.the_info @{theory} "Term5.rtrm5")
[[[], [], [(SOME (@{term rbv5}, true), 0, 1)]], [[], []]] [(@{term rbv5}, 1, [[], [0, 2]])] *}
print_theorems
notation
alpha_rtrm5 ("_ \<approx>5 _" [100, 100] 100) and
alpha_rlts ("_ \<approx>l _" [100, 100] 100)
thm alpha_rtrm5_alpha_rlts_alpha_rbv5.intros
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha5_inj}, []), (build_alpha_inj @{thms alpha_rtrm5_alpha_rlts_alpha_rbv5.intros} @{thms rtrm5.distinct rtrm5.inject rlts.distinct rlts.inject} @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} ctxt)) ctxt)) *}
thm alpha5_inj
lemma rbv5_eqvt[eqvt]:
"pi \<bullet> (rbv5 x) = rbv5 (pi \<bullet> x)"
apply (induct x)
apply (simp_all add: eqvts atom_eqvt)
done
lemma fv_rtrm5_rlts_eqvt[eqvt]:
"pi \<bullet> (fv_rtrm5 x) = fv_rtrm5 (pi \<bullet> x)"
"pi \<bullet> (fv_rlts l) = fv_rlts (pi \<bullet> l)"
apply (induct x and l)
apply (simp_all add: eqvts atom_eqvt)
done
lemma alpha5_eqvt:
"(xa \<approx>5 y \<longrightarrow> (p \<bullet> xa) \<approx>5 (p \<bullet> y)) \<and>
(xb \<approx>l ya \<longrightarrow> (p \<bullet> xb) \<approx>l (p \<bullet> ya)) \<and>
(alpha_rbv5 a b c \<longrightarrow> alpha_rbv5 (p \<bullet> a) (p \<bullet> b) (p \<bullet> c))"
apply (tactic {* alpha_eqvt_tac @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj permute_rtrm5_permute_rlts.simps} @{context} 1 *})
done
lemma alpha5_reflp:
"y \<approx>5 y \<and> (x \<approx>l x \<and> alpha_rbv5 0 x x)"
apply (rule rtrm5_rlts.induct)
apply (simp_all add: alpha5_inj)
apply (rule_tac x="0::perm" in exI)
apply (simp add: eqvts alpha_gen fresh_star_def fresh_zero_perm)
done
lemma alpha5_symp:
"(a \<approx>5 b \<longrightarrow> a \<approx>5 b) \<and>
(x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
(alpha_rbv5 p x y \<longrightarrow> alpha_rbv5 (-p) y x)"
apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
apply (simp_all add: alpha5_inj)
sorry
lemma alpha5_equivp:
"equivp alpha_rtrm5"
"equivp alpha_rlts"
"equivp (alpha_rbv5 p)"
sorry
quotient_type
trm5 = rtrm5 / alpha_rtrm5
and
lts = rlts / alpha_rlts
by (auto intro: alpha5_equivp)
local_setup {*
(fn ctxt => ctxt
|> snd o (Quotient_Def.quotient_lift_const ("Vr5", @{term rVr5}))
|> snd o (Quotient_Def.quotient_lift_const ("Ap5", @{term rAp5}))
|> snd o (Quotient_Def.quotient_lift_const ("Lt5", @{term rLt5}))
|> snd o (Quotient_Def.quotient_lift_const ("Lnil", @{term rLnil}))
|> snd o (Quotient_Def.quotient_lift_const ("Lcons", @{term rLcons}))
|> snd o (Quotient_Def.quotient_lift_const ("fv_trm5", @{term fv_rtrm5}))
|> snd o (Quotient_Def.quotient_lift_const ("fv_lts", @{term fv_rlts}))
|> snd o (Quotient_Def.quotient_lift_const ("bv5", @{term rbv5}))
|> snd o (Quotient_Def.quotient_lift_const ("alpha_bv5", @{term alpha_rbv5})))
*}
print_theorems
lemma alpha5_rfv:
"(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"
"(l \<approx>l m \<Longrightarrow> (fv_rlts l = fv_rlts m))"
"(alpha_rbv5 a b c \<Longrightarrow> True)"
apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts)
apply(simp_all)
apply(simp add: alpha_gen)
apply(clarify)
apply(simp_all)
sorry (* works for non-rec *)
lemma bv_list_rsp:
shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"
apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))
apply(simp_all)
apply(clarify)
apply simp
done
lemma [quot_respect]:
"(alpha_rlts ===> op =) fv_rlts fv_rlts"
"(alpha_rtrm5 ===> op =) fv_rtrm5 fv_rtrm5"
"(alpha_rlts ===> op =) rbv5 rbv5"
"(op = ===> alpha_rtrm5) rVr5 rVr5"
"(alpha_rtrm5 ===> alpha_rtrm5 ===> alpha_rtrm5) rAp5 rAp5"
"(alpha_rlts ===> alpha_rtrm5 ===> alpha_rtrm5) rLt5 rLt5"
"(op = ===> alpha_rtrm5 ===> alpha_rlts ===> alpha_rlts) rLcons rLcons"
"(op = ===> alpha_rtrm5 ===> alpha_rtrm5) permute permute"
"(op = ===> alpha_rlts ===> alpha_rlts) permute permute"
"(op = ===> alpha_rlts ===> alpha_rlts ===> op =) alpha_rbv5 alpha_rbv5"
apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp)
apply (clarify)
apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
apply (erule alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))
apply (simp_all add: alpha5_inj)
apply clarify
apply clarify
apply (erule alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))
apply simp_all
apply (erule_tac[!] alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))
apply simp_all
defer defer (* Both sides false, so equal when we have distinct *)
apply (erule conjE)+
apply clarify
apply (simp add: alpha5_inj)
sorry (* may be true? *)
lemma
shows "(alpha_rlts ===> op =) rbv5 rbv5"
by (simp add: bv_list_rsp)
lemmas trm5_lts_inducts = rtrm5_rlts.inducts[quot_lifted]
instantiation trm5 and lts :: pt
begin
quotient_definition
"permute_trm5 :: perm \<Rightarrow> trm5 \<Rightarrow> trm5"
is
"permute :: perm \<Rightarrow> rtrm5 \<Rightarrow> rtrm5"
quotient_definition
"permute_lts :: perm \<Rightarrow> lts \<Rightarrow> lts"
is
"permute :: perm \<Rightarrow> rlts \<Rightarrow> rlts"
instance by default
(simp_all add: permute_rtrm5_permute_rlts_zero[quot_lifted] permute_rtrm5_permute_rlts_append[quot_lifted])
end
lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted]
lemmas bv5[simp] = rbv5.simps[quot_lifted]
lemmas fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted]
lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
lemma lets_ok:
"(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"
apply (simp add: alpha5_INJ)
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
apply (simp_all add: alpha_gen)
apply (simp add: permute_trm5_lts fresh_star_def)
apply (metis flip_at_simps(1) supp_at_base supp_eqvt)
done
lemma lets_ok3:
"x \<noteq> y \<Longrightarrow>
(Lt5 (Lcons x (Ap5 (Vr5 y) (Vr5 x)) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \<noteq>
(Lt5 (Lcons y (Ap5 (Vr5 x) (Vr5 y)) (Lcons x (Vr5 x) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
apply (simp add: permute_trm5_lts alpha_gen alpha5_INJ)
done
lemma lets_not_ok1:
"(Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) =
(Lt5 (Lcons y (Vr5 x) (Lcons x (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
apply (simp add: alpha5_INJ alpha_gen)
apply (rule_tac x="0::perm" in exI)
apply (simp add: permute_trm5_lts fresh_star_def alpha5_INJ(5) alpha5_INJ(2) alpha5_INJ(1) eqvts)
apply auto
done
lemma distinct_helper:
shows "\<not>(rVr5 x \<approx>5 rAp5 y z)"
apply auto
apply (erule alpha_rtrm5.cases)
apply (simp_all only: rtrm5.distinct)
done
lemma distinct_helper2:
shows "(Vr5 x) \<noteq> (Ap5 y z)"
by (lifting distinct_helper)
lemma lets_nok:
"x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
(Lt5 (Lcons x (Ap5 (Vr5 z) (Vr5 z)) (Lcons y (Vr5 z) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \<noteq>
(Lt5 (Lcons y (Vr5 z) (Lcons x (Ap5 (Vr5 z) (Vr5 z)) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
apply (simp only: alpha5_INJ(3) alpha5_INJ(5) alpha_gen permute_trm5_lts fresh_star_def)
apply (simp add: distinct_helper2 alpha5_INJ permute_trm5_lts)
done
end