Nominal/Abs.thy
author Christian Urban <urbanc@in.tum.de>
Sat, 10 Jul 2010 11:27:04 +0100
changeset 2351 842969a598f2
parent 2324 9038c9549073
child 2385 fe25a3ffeb14
permissions -rw-r--r--
added material for slides

theory Abs
imports "../Nominal-General/Nominal2_Atoms" 
        "../Nominal-General/Nominal2_Eqvt" 
        "../Nominal-General/Nominal2_Supp" 
        "Quotient" 
        "Quotient_List"
        "Quotient_Product" 
begin

fun
  alpha_gen 
where
  alpha_gen[simp del]:
  "alpha_gen (bs, x) R f pi (cs, y) \<longleftrightarrow> 
     f x - bs = f y - cs \<and> 
     (f x - bs) \<sharp>* pi \<and> 
     R (pi \<bullet> x) y \<and>
     pi \<bullet> bs = cs"

fun
  alpha_res
where
  alpha_res[simp del]:
  "alpha_res (bs, x) R f pi (cs, y) \<longleftrightarrow> 
     f x - bs = f y - cs \<and> 
     (f x - bs) \<sharp>* pi \<and> 
     R (pi \<bullet> x) y"

fun
  alpha_lst
where
  alpha_lst[simp del]:
  "alpha_lst (bs, x) R f pi (cs, y) \<longleftrightarrow> 
     f x - set bs = f y - set cs \<and> 
     (f x - set bs) \<sharp>* pi \<and> 
     R (pi \<bullet> x) y \<and>
     pi \<bullet> bs = cs"

lemmas alphas = alpha_gen.simps alpha_res.simps alpha_lst.simps

notation
  alpha_gen ("_ \<approx>gen _ _ _ _" [100, 100, 100, 100, 100] 100) and
  alpha_res ("_ \<approx>res _ _ _ _" [100, 100, 100, 100, 100] 100) and
  alpha_lst ("_ \<approx>lst _ _ _ _" [100, 100, 100, 100, 100] 100) 

(* monos *)
lemma [mono]: 
  shows "R1 \<le> R2 \<Longrightarrow> alpha_gen bs R1 \<le> alpha_gen bs R2"
  and   "R1 \<le> R2 \<Longrightarrow> alpha_res bs R1 \<le> alpha_res bs R2"
  and   "R1 \<le> R2 \<Longrightarrow> alpha_lst cs R1 \<le> alpha_lst cs R2"
  by (case_tac [!] bs, case_tac [!] cs) 
     (auto simp add: le_fun_def le_bool_def alphas)

(* equivariance *)
lemma alpha_gen_eqvt[eqvt]:
  shows "(bs, x) \<approx>gen R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>gen (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
  and   "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
  and   "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> es, p \<bullet> y)" 
  unfolding alphas
  unfolding permute_eqvt[symmetric]
  unfolding set_eqvt[symmetric]
  unfolding permute_fun_app_eq[symmetric]
  unfolding Diff_eqvt[symmetric]
  by (auto simp add: permute_bool_def fresh_star_permute_iff)

(* equivalence *)
lemma alpha_gen_refl:
  assumes a: "R x x"
  shows "(bs, x) \<approx>gen R f 0 (bs, x)"
  and   "(bs, x) \<approx>res R f 0 (bs, x)"
  and   "(cs, x) \<approx>lst R f 0 (cs, x)"
  using a 
  unfolding alphas
  unfolding fresh_star_def
  by (simp_all add: fresh_zero_perm)

lemma alpha_gen_sym:
  assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
  shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
  and   "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
  and   "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
  unfolding alphas fresh_star_def
  using a
  by (auto simp add:  fresh_minus_perm)

lemma alpha_gen_sym_eqvt:
  assumes a: "R (p \<bullet> x) y \<Longrightarrow> R y (p \<bullet> x)" 
  and     b: "p \<bullet> R = R"
  shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)" 
  and   "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)" 
  and   "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
apply(auto intro!: alpha_gen_sym)
apply(drule_tac [!] a)
apply(rule_tac [!] p="p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
done

lemma alpha_gen_trans:
  assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
  shows "\<lbrakk>(bs, x) \<approx>gen R f p (cs, y); (cs, y) \<approx>gen R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>gen R f (q + p) (ds, z)"
  and   "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
  and   "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
  using a
  unfolding alphas fresh_star_def
  by (simp_all add: fresh_plus_perm)


lemma alpha_gen_trans_eqvt:
  assumes b: "(cs, y) \<approx>gen R f q (ds, z)"
  and     a: "(bs, x) \<approx>gen R f p (cs, y)" 
  and     d: "q \<bullet> R = R"
  and     c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
  shows "(bs, x) \<approx>gen R f (q + p) (ds, z)"
apply(rule alpha_gen_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done

lemma alpha_res_trans_eqvt:
  assumes  b: "(cs, y) \<approx>res R f q (ds, z)"
  and     a: "(bs, x) \<approx>res R f p (cs, y)" 
  and     d: "q \<bullet> R = R"
  and     c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
  shows "(bs, x) \<approx>res R f (q + p) (ds, z)"
apply(rule alpha_gen_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done

lemma alpha_lst_trans_eqvt:
  assumes b: "(cs, y) \<approx>lst R f q (ds, z)"
  and     a: "(bs, x) \<approx>lst R f p (cs, y)" 
  and     d: "q \<bullet> R = R"
  and     c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
  shows "(bs, x) \<approx>lst R f (q + p) (ds, z)"
apply(rule alpha_gen_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done

lemmas alpha_trans_eqvt = alpha_gen_trans_eqvt alpha_res_trans_eqvt alpha_lst_trans_eqvt

lemma test:
  shows "(as, t) \<approx>gen R f pi (bs, s) \<Longrightarrow> R (pi \<bullet> t) s"
  and   "(as, t) \<approx>res R f pi (bs, s) \<Longrightarrow> R (pi \<bullet> t) s"
  and   "(cs, t) \<approx>lst R f pi (ds, s) \<Longrightarrow> R (pi \<bullet> t) s"
  by (simp_all add: alphas)


section {* General Abstractions *}

fun
  alpha_abs 
where
  [simp del]:
  "alpha_abs (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"

fun
  alpha_abs_lst
where
  [simp del]:
  "alpha_abs_lst (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>lst (op=) supp p (cs, y))"

fun
  alpha_abs_res
where
  [simp del]:
  "alpha_abs_res (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op=) supp p (cs, y))"

notation
  alpha_abs (infix "\<approx>abs" 50) and
  alpha_abs_lst (infix "\<approx>abs'_lst" 50) and
  alpha_abs_res (infix "\<approx>abs'_res" 50)

lemmas alphas_abs = alpha_abs.simps alpha_abs_res.simps alpha_abs_lst.simps

lemma alphas_abs_refl:
  shows "(bs, x) \<approx>abs (bs, x)"
  and   "(bs, x) \<approx>abs_res (bs, x)"
  and   "(cs, x) \<approx>abs_lst (cs, x)" 
  unfolding alphas_abs
  unfolding alphas
  unfolding fresh_star_def
  by (rule_tac [!] x="0" in exI)
     (simp_all add: fresh_zero_perm)

lemma alphas_abs_sym:
  shows "(bs, x) \<approx>abs (cs, y) \<Longrightarrow> (cs, y) \<approx>abs (bs, x)"
  and   "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_res (bs, x)"
  and   "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (es, y) \<approx>abs_lst (ds, x)"
  unfolding alphas_abs
  unfolding alphas
  unfolding fresh_star_def
  by (erule_tac [!] exE, rule_tac [!] x="-p" in exI)
     (auto simp add: fresh_minus_perm)

lemma alphas_abs_trans:
  shows "\<lbrakk>(bs, x) \<approx>abs (cs, y); (cs, y) \<approx>abs (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs (ds, z)"
  and   "\<lbrakk>(bs, x) \<approx>abs_res (cs, y); (cs, y) \<approx>abs_res (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_res (ds, z)"
  and   "\<lbrakk>(es, x) \<approx>abs_lst (gs, y); (gs, y) \<approx>abs_lst (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>abs_lst (hs, z)"
  unfolding alphas_abs
  unfolding alphas
  unfolding fresh_star_def
  apply(erule_tac [!] exE, erule_tac [!] exE)
  apply(rule_tac [!] x="pa + p" in exI)
  by (simp_all add: fresh_plus_perm)

lemma alphas_abs_eqvt:
  shows "(bs, x) \<approx>abs (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs (p \<bullet> cs, p \<bullet> y)"
  and   "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_res (p \<bullet> cs, p \<bullet> y)"
  and   "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>abs_lst (p \<bullet> es, p \<bullet> y)"
  unfolding alphas_abs
  unfolding alphas
  unfolding set_eqvt[symmetric]
  unfolding supp_eqvt[symmetric]
  unfolding Diff_eqvt[symmetric]
  apply(erule_tac [!] exE)
  apply(rule_tac [!] x="p \<bullet> pa" in exI)
  by (auto simp add: fresh_star_permute_iff permute_eqvt[symmetric])

quotient_type 
    'a abs_gen = "(atom set \<times> 'a::pt)" / "alpha_abs"
and 'b abs_res = "(atom set \<times> 'b::pt)" / "alpha_abs_res"
and 'c abs_lst = "(atom list \<times> 'c::pt)" / "alpha_abs_lst"
  apply(rule_tac [!] equivpI)
  unfolding reflp_def symp_def transp_def
  by (auto intro: alphas_abs_sym alphas_abs_refl alphas_abs_trans simp only:)

quotient_definition
  Abs ("[_]set. _" [60, 60] 60)
where
  "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_gen"
is
  "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"

quotient_definition
  Abs_res ("[_]res. _" [60, 60] 60)
where
  "Abs_res::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_res"
is
  "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"

quotient_definition
  Abs_lst ("[_]lst. _" [60, 60] 60)
where
  "Abs_lst::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_lst"
is
  "Pair::atom list \<Rightarrow> ('a::pt) \<Rightarrow> (atom list \<times> 'a)"

lemma [quot_respect]:
  shows "(op= ===> op= ===> alpha_abs) Pair Pair"
  and   "(op= ===> op= ===> alpha_abs_res) Pair Pair"
  and   "(op= ===> op= ===> alpha_abs_lst) Pair Pair"
  unfolding fun_rel_def
  by (auto intro: alphas_abs_refl simp only:)

lemma [quot_respect]:
  shows "(op= ===> alpha_abs ===> alpha_abs) permute permute"
  and   "(op= ===> alpha_abs_res ===> alpha_abs_res) permute permute"
  and   "(op= ===> alpha_abs_lst ===> alpha_abs_lst) permute permute"
  unfolding fun_rel_def
  by (auto intro: alphas_abs_eqvt simp only: Pair_eqvt)

lemma abs_exhausts:
  shows "(\<And>as (x::'a::pt). y1 = Abs as x \<Longrightarrow> P1) \<Longrightarrow> P1"
  and   "(\<And>as (x::'a::pt). y2 = Abs_res as x \<Longrightarrow> P2) \<Longrightarrow> P2"
  and   "(\<And>as (x::'a::pt). y3 = Abs_lst as x \<Longrightarrow> P3) \<Longrightarrow> P3"
  by (lifting prod.exhaust[where 'a="atom set" and 'b="'a"]
              prod.exhaust[where 'a="atom set" and 'b="'a"]
              prod.exhaust[where 'a="atom list" and 'b="'a"])

lemma abs_eq_iff:
  shows "Abs bs x = Abs cs y \<longleftrightarrow> (bs, x) \<approx>abs (cs, y)"
  and   "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (bs, x) \<approx>abs_res (cs, y)"
  and   "Abs_lst ds x = Abs_lst hs y \<longleftrightarrow> (ds, x) \<approx>abs_lst (hs, y)"
  unfolding alphas_abs
  by (lifting alphas_abs)

instantiation abs_gen :: (pt) pt
begin

quotient_definition
  "permute_abs_gen::perm \<Rightarrow> ('a::pt abs_gen) \<Rightarrow> 'a abs_gen"
is
  "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"

lemma permute_Abs[simp]:
  fixes x::"'a::pt"  
  shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
  by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])

instance
  apply(default)
  apply(case_tac [!] x rule: abs_exhausts(1))
  apply(simp_all)
  done

end

instantiation abs_res :: (pt) pt
begin

quotient_definition
  "permute_abs_res::perm \<Rightarrow> ('a::pt abs_res) \<Rightarrow> 'a abs_res"
is
  "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"

lemma permute_Abs_res[simp]:
  fixes x::"'a::pt"  
  shows "(p \<bullet> (Abs_res as x)) = Abs_res (p \<bullet> as) (p \<bullet> x)"
  by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])

instance
  apply(default)
  apply(case_tac [!] x rule: abs_exhausts(2))
  apply(simp_all)
  done

end

instantiation abs_lst :: (pt) pt
begin

quotient_definition
  "permute_abs_lst::perm \<Rightarrow> ('a::pt abs_lst) \<Rightarrow> 'a abs_lst"
is
  "permute:: perm \<Rightarrow> (atom list \<times> 'a::pt) \<Rightarrow> (atom list \<times> 'a::pt)"

lemma permute_Abs_lst[simp]:
  fixes x::"'a::pt"  
  shows "(p \<bullet> (Abs_lst as x)) = Abs_lst (p \<bullet> as) (p \<bullet> x)"
  by (lifting permute_prod.simps[where 'a="atom list" and 'b="'a"])

instance
  apply(default)
  apply(case_tac [!] x rule: abs_exhausts(3))
  apply(simp_all)
  done

end

lemmas permute_abs = permute_Abs permute_Abs_res permute_Abs_lst

lemma abs_swap1:
  assumes a1: "a \<notin> (supp x) - bs"
  and     a2: "b \<notin> (supp x) - bs"
  shows "Abs bs x = Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
  and   "Abs_res bs x = Abs_res ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
  unfolding abs_eq_iff
  unfolding alphas_abs
  unfolding alphas
  unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] 
  unfolding fresh_star_def fresh_def
  unfolding swap_set_not_in[OF a1 a2] 
  using a1 a2
  by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
     (auto simp add: supp_perm swap_atom)

lemma abs_swap2:
  assumes a1: "a \<notin> (supp x) - (set bs)"
  and     a2: "b \<notin> (supp x) - (set bs)"
  shows "Abs_lst bs x = Abs_lst ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
  unfolding abs_eq_iff
  unfolding alphas_abs
  unfolding alphas
  unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] set_eqvt[symmetric]
  unfolding fresh_star_def fresh_def
  unfolding swap_set_not_in[OF a1 a2]
  using a1 a2
  by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
     (auto simp add: supp_perm swap_atom)

lemma abs_supports:
  shows "((supp x) - as) supports (Abs as x)"
  and   "((supp x) - as) supports (Abs_res as x)"
  and   "((supp x) - (set bs)) supports (Abs_lst bs x)"
  unfolding supports_def
  unfolding permute_abs
  by (simp_all add: abs_swap1[symmetric] abs_swap2[symmetric])

function
  supp_gen  :: "('a::pt) abs_gen \<Rightarrow> atom set"
where
  "supp_gen (Abs as x) = supp x - as"
apply(case_tac x rule: abs_exhausts(1))
apply(simp)
apply(simp add: abs_eq_iff alphas_abs alphas)
done

termination supp_gen 
  by (auto intro!: local.termination)

function
  supp_res :: "('a::pt) abs_res \<Rightarrow> atom set"
where
  "supp_res (Abs_res as x) = supp x - as"
apply(case_tac x rule: abs_exhausts(2))
apply(simp)
apply(simp add: abs_eq_iff alphas_abs alphas)
done

termination supp_res 
  by (auto intro!: local.termination)

function
  supp_lst :: "('a::pt) abs_lst \<Rightarrow> atom set"
where
  "supp_lst (Abs_lst cs x) = (supp x) - (set cs)"
apply(case_tac x rule: abs_exhausts(3))
apply(simp)
apply(simp add: abs_eq_iff alphas_abs alphas)
done

termination supp_lst 
  by (auto intro!: local.termination)

lemma [eqvt]:
  shows "(p \<bullet> supp_gen x) = supp_gen (p \<bullet> x)"
  and   "(p \<bullet> supp_res y) = supp_res (p \<bullet> y)"
  and   "(p \<bullet> supp_lst z) = supp_lst (p \<bullet> z)"
  apply(case_tac x rule: abs_exhausts(1))
  apply(simp add: supp_eqvt Diff_eqvt)
  apply(case_tac y rule: abs_exhausts(2))
  apply(simp add: supp_eqvt Diff_eqvt)
  apply(case_tac z rule: abs_exhausts(3))
  apply(simp add: supp_eqvt Diff_eqvt set_eqvt)
  done

lemma aux_fresh:
  shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_gen (Abs bs x)"
  and   "a \<sharp> Abs_res bs x \<Longrightarrow> a \<sharp> supp_res (Abs_res bs x)"
  and   "a \<sharp> Abs_lst cs x \<Longrightarrow> a \<sharp> supp_lst (Abs_lst cs x)"
  by (rule_tac [!] fresh_fun_eqvt_app)
     (simp_all add: eqvts_raw)

lemma supp_abs_subset1:
  assumes a: "finite (supp x)"
  shows "(supp x) - as \<subseteq> supp (Abs as x)"
  and   "(supp x) - as \<subseteq> supp (Abs_res as x)"
  and   "(supp x) - (set bs) \<subseteq> supp (Abs_lst bs x)"
  unfolding supp_conv_fresh
  by (auto dest!: aux_fresh)
     (simp_all add: fresh_def supp_finite_atom_set a)

lemma supp_abs_subset2:
  assumes a: "finite (supp x)"
  shows "supp (Abs as x) \<subseteq> (supp x) - as"
  and   "supp (Abs_res as x) \<subseteq> (supp x) - as"
  and   "supp (Abs_lst bs x) \<subseteq> (supp x) - (set bs)"
  by (rule_tac [!] supp_is_subset)
     (simp_all add: abs_supports a)

lemma abs_finite_supp:
  assumes a: "finite (supp x)"
  shows "supp (Abs as x) = (supp x) - as"
  and   "supp (Abs_res as x) = (supp x) - as"
  and   "supp (Abs_lst bs x) = (supp x) - (set bs)"
  by (rule_tac [!] subset_antisym)
     (simp_all add: supp_abs_subset1[OF a] supp_abs_subset2[OF a])

lemma supp_abs:
  fixes x::"'a::fs"
  shows "supp (Abs as x) = (supp x) - as"
  and   "supp (Abs_res as x) = (supp x) - as"
  and   "supp (Abs_lst bs x) = (supp x) - (set bs)"
  by (rule_tac [!] abs_finite_supp)
     (simp_all add: finite_supp)

instance abs_gen :: (fs) fs
  apply(default)
  apply(case_tac x rule: abs_exhausts(1))
  apply(simp add: supp_abs finite_supp)
  done

instance abs_res :: (fs) fs
  apply(default)
  apply(case_tac x rule: abs_exhausts(2))
  apply(simp add: supp_abs finite_supp)
  done

instance abs_lst :: (fs) fs
  apply(default)
  apply(case_tac x rule: abs_exhausts(3))
  apply(simp add: supp_abs finite_supp)
  done

lemma abs_fresh_iff:
  fixes x::"'a::fs"
  shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
  and   "a \<sharp> Abs_res bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
  and   "a \<sharp> Abs_lst cs x \<longleftrightarrow> a \<in> (set cs) \<or> (a \<notin> (set cs) \<and> a \<sharp> x)"
  unfolding fresh_def
  unfolding supp_abs
  by auto

section {* BELOW is stuff that may or may not be needed *}

lemma supp_atom_image:
  fixes as::"'a::at_base set"
  shows "supp (atom ` as) = supp as"
apply(simp add: supp_def)
apply(simp add: image_eqvt)
apply(simp add: eqvts_raw)
apply(simp add: atom_image_cong)
done

lemma swap_atom_image_fresh: 
  "\<lbrakk>a \<sharp> atom ` (fn :: ('a :: at_base set)); b \<sharp> atom ` fn\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> fn = fn"
  apply (simp add: fresh_def)
  apply (simp add: supp_atom_image)
  apply (fold fresh_def)
  apply (simp add: swap_fresh_fresh)
  done

(* TODO: The following lemmas can be moved somewhere... *)

lemma Abs_eq_iff:
  shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
  and   "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y))"
  and   "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow> (\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y))"
  by (lifting alphas_abs)

lemma split_rsp2[quot_respect]: "((R1 ===> R2 ===> prod_rel R1 R2 ===> op =) ===>
  prod_rel R1 R2 ===> prod_rel R1 R2 ===> op =) split split"
  by auto

lemma split_prs2[quot_preserve]:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and q2: "Quotient R2 Abs2 Rep2"
  shows "((Abs1 ---> Abs2 ---> prod_fun Abs1 Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> prod_fun Rep1 Rep2 ---> id) split = split"
  by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])

lemma alphas2:
  "(bs, x1, x2) \<approx>gen (\<lambda>(x1, y1) (x2, y2). R1 x1 x2 \<and> R2 y1 y2) (\<lambda>(a, b). f1 a \<union> f2 b) pi (cs, y1, y2) =
  (f1 x1 \<union> f2 x2 - bs = f1 y1 \<union> f2 y2 - cs \<and> (f1 x1 \<union> f2 x2 - bs) \<sharp>* pi \<and> R1 (pi \<bullet> x1) y1 \<and> R2 (pi \<bullet> x2) y2
  \<and> pi \<bullet> bs = cs)"
  "(bs, x1, x2) \<approx>res (\<lambda>(x1, y1) (x2, y2). R1 x1 x2 \<and> R2 y1 y2) (\<lambda>(a, b). f1 a \<union> f2 b) pi (cs, y1, y2) =
  (f1 x1 \<union> f2 x2 - bs = f1 y1 \<union> f2 y2 - cs \<and> (f1 x1 \<union> f2 x2 - bs) \<sharp>* pi \<and> R1 (pi \<bullet> x1) y1 \<and> R2 (pi \<bullet> x2) y2)"
  "(bsl, x1, x2) \<approx>lst (\<lambda>(x1, y1) (x2, y2). R1 x1 x2 \<and> R2 y1 y2) (\<lambda>(a, b). f1 a \<union> f2 b) pi (csl, y1, y2) =
  (f1 x1 \<union> f2 x2 - set bsl = f1 y1 \<union> f2 y2 - set csl \<and> (f1 x1 \<union> f2 x2 - set bsl) \<sharp>* pi \<and> R1 (pi \<bullet> x1) y1 \<and> R2 (pi \<bullet> x2) y2
  \<and> pi \<bullet> bsl = csl)"
by (simp_all add: alphas)

lemma alphas3:
  "(bsl, x1, x2, x3) \<approx>lst (\<lambda>(x1, y1, z1) (x2, y2, z2). R1 x1 x2 \<and> R2 y1 y2 \<and> R3 z1 z2) (\<lambda>(a, b, c). f1 a \<union> (f2 b \<union> f3 c)) pi (csl, y1, y2, y3) = (f1 x1 \<union> (f2 x2 \<union> f3 x3) - set bsl = f1 y1 \<union> (f2 y2 \<union> f3 y3) - set csl \<and>
     (f1 x1 \<union> (f2 x2 \<union> f3 x3) - set bsl) \<sharp>* pi \<and>
     R1 (pi \<bullet> x1) y1 \<and> R2 (pi \<bullet> x2) y2 \<and> R3 (pi \<bullet> x3) y3 \<and> pi \<bullet> bsl = csl)"
by (simp add: alphas)

lemma alpha_gen_simpler:
  assumes fv_rsp: "\<And>x y. R y x \<Longrightarrow> f x = f y"
  and fin_fv: "finite (f x)"
  and fv_eqvt: "pi \<bullet> f x = f (pi \<bullet> x)"
  shows "alpha_gen (bs, x) R f pi (cs, y) \<longleftrightarrow>
     (f x - bs) \<sharp>* pi \<and>
     R (pi \<bullet> x) y \<and>
     pi \<bullet> bs = cs"
  apply rule
  unfolding alpha_gen
  apply clarify
  apply (erule conjE)+
  apply (simp)
  apply (subgoal_tac "f y - cs = pi \<bullet> (f x - bs)")
  apply (rule sym)
  apply simp
  apply (rule supp_perm_eq)
  apply (subst supp_finite_atom_set)
  apply (rule finite_Diff)
  apply (rule fin_fv)
  apply (assumption)
  apply (simp add: eqvts fv_eqvt)
  apply (subst fv_rsp)
  apply assumption
  apply (simp)
  done

lemma alpha_lst_simpler:
  assumes fv_rsp: "\<And>x y. R y x \<Longrightarrow> f x = f y"
  and fin_fv: "finite (f x)"
  and fv_eqvt: "pi \<bullet> f x = f (pi \<bullet> x)"
  shows "alpha_lst (bs, x) R f pi (cs, y) \<longleftrightarrow>
     (f x - set bs) \<sharp>* pi \<and>
     R (pi \<bullet> x) y \<and>
     pi \<bullet> bs = cs"
  apply rule
  unfolding alpha_lst
  apply clarify
  apply (erule conjE)+
  apply (simp)
  apply (subgoal_tac "f y - set cs = pi \<bullet> (f x - set bs)")
  apply (rule sym)
  apply simp
  apply (rule supp_perm_eq)
  apply (subst supp_finite_atom_set)
  apply (rule finite_Diff)
  apply (rule fin_fv)
  apply (assumption)
  apply (simp add: eqvts fv_eqvt)
  apply (subst fv_rsp)
  apply assumption
  apply (simp)
  done

fun
  prod_fv :: "('a \<Rightarrow> atom set) \<Rightarrow> ('b \<Rightarrow> atom set) \<Rightarrow> ('a \<times> 'b) \<Rightarrow> atom set"
where
  "prod_fv fvx fvy (x, y) = (fvx x \<union> fvy y)"

definition 
  prod_alpha :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool)"
where
 "prod_alpha = prod_rel"


lemma [quot_respect]:
  shows "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv"
  by auto

lemma [quot_preserve]:
  assumes q1: "Quotient R1 abs1 rep1"
  and     q2: "Quotient R2 abs2 rep2"
  shows "((abs1 ---> id) ---> (abs2 ---> id) ---> prod_fun rep1 rep2 ---> id) prod_fv = prod_fv"
  by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])

lemma [mono]: 
  shows "A <= B \<Longrightarrow> C <= D ==> prod_alpha A C <= prod_alpha B D"
  unfolding prod_alpha_def
  by auto

lemma [eqvt]: 
  shows "p \<bullet> prod_alpha A B x y = prod_alpha (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
  unfolding prod_alpha_def
  unfolding prod_rel.simps
  by (perm_simp) (rule refl)

lemma [eqvt]: 
  shows "p \<bullet> prod_fv A B (x, y) = prod_fv (p \<bullet> A) (p \<bullet> B) (p \<bullet> x, p \<bullet> y)"
  unfolding prod_fv.simps
  by (perm_simp) (rule refl)


end