(*<*)
theory Slides3
imports "LaTeXsugar" "Nominal"
begin
notation (latex output)
set ("_") and
Cons ("_::/_" [66,65] 65)
(*>*)
text_raw {*
\renewcommand{\slidecaption}{UNIF, Edinburgh, 14.~July 2010}
\newcommand{\abst}[2]{#1.#2}% atom-abstraction
\newcommand{\pair}[2]{\langle #1,#2\rangle} % pairing
\newcommand{\susp}{{\boldsymbol{\cdot}}}% for suspensions
\newcommand{\unit}{\langle\rangle}% unit
\newcommand{\app}[2]{#1\,#2}% application
\newcommand{\eqprob}{\mathrel{{\approx}?}}
\pgfdeclareradialshading{smallbluesphere}{\pgfpoint{0.5mm}{0.5mm}}%
{rgb(0mm)=(0,0,0.9);
rgb(0.9mm)=(0,0,0.7);
rgb(1.3mm)=(0,0,0.5);
rgb(1.4mm)=(1,1,1)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[c]
\frametitle{Quiz}
Assuming that \smath{a} and \smath{b} are distinct variables,\\
is it possible to find $\lambda$-terms \smath{M_1} to \smath{M_7}
that make the following pairs \alert{$\alpha$-equivalent}?
\begin{tabular}{@ {\hspace{14mm}}p{12cm}}
\begin{itemize}
\item \smath{\lambda a.\lambda b. (M_1\,b)\;} and
\smath{\lambda b.\lambda a. (a\,M_1)\;}
\item \smath{\lambda a.\lambda b. (M_2\,b)\;} and
\smath{\lambda b.\lambda a. (a\,M_3)\;}
\item \smath{\lambda a.\lambda b. (b\,M_4)\;} and
\smath{\lambda b.\lambda a. (a\,M_5)\;}
\item \smath{\lambda a.\lambda b. (b\,M_6)\;} and
\smath{\lambda a.\lambda a. (a\,M_7)\;}
\end{itemize}
\end{tabular}
If there is one solution for a pair, can you describe all its solutions?
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
\begin{tabular}{@ {\hspace{-3mm}}c@ {}}
\\
\huge Nominal Unification\\[-2mm]
\Large Hitting a Sweet Spot\\[5mm]
\end{tabular}}
\begin{center}
Christian Urban
\end{center}
\begin{center}
\small initial work with Andy Pitts and Jamie Gabbay\\[0mm]
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-4>[c]
\frametitle{One Motivation}
\onslide<2->{Typing implemented in Prolog \textcolor{darkgray}{(from a textbook)}}\bigskip\\
\onslide<3->{
\begin{tabular}{l}
type (Gamma, var(X), T) :- member (X,T) Gamma.\smallskip\medskip\\
type (Gamma, app(M, N), T') :-\\
\hspace{3cm}type (Gamma, M, arrow(T, T')),\\
\hspace{3cm}type (Gamma, N, T).\smallskip\medskip\\
type (Gamma, lam(X, M), arrow(T, T')) :-\\
\hspace{3cm}type ((X, T)::Gamma, M, T').\smallskip\medskip\\
member X X::Tail.\\
member X Y::Tail :- member X Tail.\\
\end{tabular}}
\only<4>{
\begin{textblock}{6}(2.5,2)
\begin{tikzpicture}
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
{\color{darkgray}
\begin{minipage}{8cm}\raggedright
The problem is that \smath{\lambda x.\lambda x. (x\;x)}
gets the types
\begin{center}
\begin{tabular}{l}
\smath{T\rightarrow (T\rightarrow S) \rightarrow S} and\\
\smath{(T\rightarrow S)\rightarrow T \rightarrow S}\\
\end{tabular}
\end{center}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[c]
\frametitle{Higher-Order Unification}
\begin{itemize}
\item Lambda Prolog with full Higher-Order Unification\\
\textcolor{darkgray}{(no mgus, undecidable, modulo $\alpha\beta$)}\bigskip
\item Higher-Order Pattern Unification\\
\textcolor{darkgray}{(has mgus, decidable, some restrictions, modulo $\alpha\beta_0$)}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-10>[t]
\frametitle{Underlying Ideas}
\begin{itemize}
\item<1-> Unification (\alert{only}) up to $\alpha$
\item<2-> Swappings / Permutations
\only<2-5>{
\begin{center}
\begin{tabular}{r@ {\hspace{1mm}}l@ {\hspace{12mm}}r@ {\hspace{1mm}}l}
\only<2>{\smath{\textcolor{white}{[b\!:=\!a]}}}%
\only<3>{\smath{[b\!:=\!a]}}%
\only<4-5>{\smath{\alert{\swap{a}{b}\,\act}}} &
\onslide<2-5>{\smath{\lambda a.b}} &
\only<2>{\smath{\textcolor{white}{[b\!:=\!a]}}}%
\only<3>{\smath{[b\!:=\!a]}}%
\only<4-5>{\smath{\alert{\swap{a}{b}\,\act}}} &
\onslide<2-5>{\smath{\lambda c.b}}\\
\onslide<3-5>{\smath{=}} & \only<3>{\smath{\lambda a.a}}\only<4-5>{\smath{\lambda b.a}} &
\onslide<3-5>{\smath{=}} & \only<3>{\smath{\lambda c.a}}\only<4-5>{\smath{\lambda c.a}}\\
\end{tabular}
\end{center}\bigskip
\onslide<4-5>{
\begin{center}
\begin{tikzpicture}
\draw (0,0) node[inner sep=0mm,fill=cream, ultra thick, draw=cream]
{\begin{minipage}{8cm}
\begin{tabular}{r@ {\hspace{3mm}}l}
\smath{\swap{a}{b}\act t} $\;\dn$ & \alert{swap} {\bf all} occurences of\\
& \smath{b} and \smath{a} in \smath{t}
\end{tabular}
\end{minipage}};
\end{tikzpicture}
\end{center}}\bigskip
\onslide<5>{
Unlike for \smath{[b\!:=\!a]\act(-)}, for \smath{\swap{a}{b}\act (-)} we do
have if \smath{t =_\alpha t'} then \smath{\pi \act t =_\alpha \pi \act t'.}}}
\item<6-> Variables (or holes)\bigskip
\begin{center}
\onslide<7->{\mbox{}\hspace{-25mm}\smath{\lambda x\hspace{-0.5mm}s .}}
\onslide<8-9>{\raisebox{-1.7mm}{\huge\smath{(}}}\raisebox{-4mm}{\begin{tikzpicture}
\fill[blue] (0, 0) circle (5mm);
\end{tikzpicture}}
\onslide<8-9>{\smath{y\hspace{-0.5mm}s}{\raisebox{-1.7mm}{\huge\smath{)}}}}\bigskip
\end{center}
\only<8-9>{\smath{y\hspace{-0.5mm}s} are the parameters the hole can depend on\onslide<9->{, but
then you need $\beta_0$-reduction\medskip
\begin{center}
\smath{(\lambda x. t) y \longrightarrow_{\beta_0} t[x:=y]}
\end{center}}}
\only<10>{we will record the information about which parameters a hole
\alert{\bf cannot} depend on}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-4>[c]
\frametitle{Terms}
\begin{tabular}{lll @ {\hspace{10mm}}lll}
\onslide<1->{\pgfuseshading{smallbluesphere}} &
\onslide<1->{\colorbox{cream}{\smath{\unit}}} &
\onslide<1->{Units} &
\onslide<2->{\pgfuseshading{smallbluesphere}} &
\onslide<2->{\colorbox{cream}{\smath{a}}} &
\onslide<2->{Atoms} \\[5mm]
\onslide<1->{\pgfuseshading{smallbluesphere}} &
\onslide<1->{\colorbox{cream}{\smath{\pair{t}{t'}}}} &
\onslide<1->{Pairs} &
\onslide<3->{\pgfuseshading{smallbluesphere}} &
\onslide<3->{\colorbox{cream}{\smath{\abst{a}{t}}}} &
\onslide<3->{Abstractions}\\[5mm]
\onslide<1->{\pgfuseshading{smallbluesphere}} &
\onslide<1->{\colorbox{cream}{\smath{\app{F}{t}}}} &
\onslide<1->{Funct.} &
\onslide<4->{\pgfuseshading{smallbluesphere}} &
\onslide<4->{\colorbox{cream}{\smath{\pi\susp X}}} &
\onslide<4->{Suspensions}
\end{tabular}
\only<2>{
\begin{textblock}{13}(1.5,12)
\small Atoms are constants \textcolor{darkgray}{(infinitely many of them)}
\end{textblock}}
\only<3>{
\begin{textblock}{13}(1.5,12)
\small \smath{\ulcorner \lambda\abst{a}{a}\urcorner \mapsto \text{fn\ }\abst{a}{a}}\\
\small constructions like \smath{\text{fn\ }\abst{X}{X}} are not allowed
\end{textblock}}
\only<4>{
\begin{textblock}{13}(1.5,12)
\small \smath{X} is a variable standing for a term\\
\small \smath{\pi} is an explicit permutation \smath{\swap{a_1}{b_1}\ldots\swap{a_n}{b_n}},
waiting to be applied to the term that is substituted for \smath{X}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-3>[c]
\frametitle{Permutations}
a permutation applied to a term
\begin{center}
\begin{tabular}{lrcl}
\pgfuseshading{smallbluesphere} &
\smath{[]\act c} & \smath{\dn} & \smath{c} \\
\pgfuseshading{smallbluesphere} &
\smath{\swap{a}{b}\!::\!\pi\act c} & \smath{\dn} &
\smath{\begin{cases}
a & \text{if}\;\pi\act c = b\\
b & \text{if}\;\pi\act c = a\\
\pi\act c & \text{otherwise}
\end{cases}}\\
\onslide<2->{\pgfuseshading{smallbluesphere}} &
\onslide<2->{\smath{\pi\act\abst{a}{t}}} & \onslide<2->{\smath{\dn}} &
\onslide<2->{\smath{\abst{\pi\act a}{\pi\act t}}}\\
\onslide<3->{\pgfuseshading{smallbluesphere}} &
\onslide<3->{\smath{\pi\act\pi'\act X}} & \onslide<3->{\smath{\dn}} &
\onslide<3->{\smath{(\pi @ \pi')\act X}}\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-3>[c]
\frametitle{Freshness Constraints}
Recall \smath{\lambda a. \raisebox{-0.7mm}{\tikz \fill[blue] (0, 0) circle (2.5mm);}}
\bigskip\pause
We therefore will identify
\begin{center}
\smath{\mathtt{fn\ } a. X \;\approx\; \mathtt{fn\ } b. \alert<3->{\swap{a}{b}}\act X}
\end{center}
provided that `\smath{b} is fresh for \smath{X} --- (\smath{b\fresh X})',
i.e., does not occur freely in any ground term that might be substituted for
\smath{X}.\bigskip\pause
If we know more about \smath{X}, e.g., if we knew that \smath{a\fresh X} and
\smath{b\fresh X}, then we can replace\\ \smath{\swap{a}{b}\act X} by
\smath{X}.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-4>[c]
\frametitle{Equivalence Judgements}
\alt<1>{Our equality is {\bf not} just}{but judgements}
\begin{center}
\begin{tabular}{rl}
\colorbox{cream}{\smath{\onslide<2->{\nabla \vdash} t \approx t'}} & \alert{$\alpha$-equivalence}\\[1mm]
\onslide<4->{\colorbox{cream}{\smath{\onslide<2->{\nabla \vdash} a \fresh t}}} &
\onslide<4->{\alert{freshness}}
\end{tabular}
\end{center}
\onslide<2->{
where
\begin{center}
\smath{\nabla = \{a_1\fresh X_1,\ldots, a_n\fresh X_n\}}
\end{center}
is a finite set of \alert{freshness assumptions}.}
\onslide<3->{
\begin{center}
\smath{\{a\fresh X,b\fresh X\} \vdash \text{fn\ } a. X \approx \text{fn\ } b. X}
\end{center}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[c]
\frametitle{Rules for Equivalence}
\begin{center}
\begin{tabular}{c}
Excerpt\\
(i.e.~only the interesting rules)
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[c]
\frametitle{Rules for Equivalence}
\begin{center}
\begin{tabular}{c}
\colorbox{cream}{\smath{\infer{\nabla \vdash a \approx a}{}}}\\[8mm]
\colorbox{cream}{%
\smath{\infer{\nabla \vdash \abst{a}{t} \approx \abst{a}{t'}}
{\nabla \vdash t \approx t'}}}\\[8mm]
\colorbox{cream}{%
\smath{\infer{\nabla \vdash \abst{a}{t} \approx \abst{b}{t'}}
{a\not=b\;\; & \nabla \vdash t \approx \swap{a}{b}\act t'\;\;& \nabla \vdash a\fresh t'}}}
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-3>[c]
\frametitle{Rules for Equivalence}
\begin{center}
\colorbox{cream}{%
\smath{%
\infer{\nabla \vdash \pi\act X \approx \pi'\act X}
{\begin{array}{c}
(a\fresh X)\in\nabla\\
\text{for all}\; a \;\text{with}\;\pi\act a \not= \pi'\act a
\end{array}
}}}
\end{center}
\onslide<2->{
for example\\[4mm]
\alt<2>{%
\begin{center}
\smath{\{a\fresh\!X, b\fresh\!X\} \vdash X \approx \swap{a}{b}\act X}
\end{center}}
{%
\begin{center}
\smath{\{a\fresh\!X, c\fresh\!X\} \vdash \swap{a}{c}\swap{a}{b}\act X \approx \swap{b}{c}\act X}
\end{center}}
\onslide<3->{
\begin{tabular}{@ {}lllll@ {}}
because &
\smath{\swap{a}{c}\swap{a}{b}}: &
\smath{a\mapsto b} &
\smath{\swap{b}{c}}: &
\smath{a\mapsto a}\\
& & \smath{b\mapsto c} & & \smath{b\mapsto c}\\
& & \smath{c\mapsto a} & & \smath{c\mapsto b}\\
\end{tabular}
disagree at \smath{a} and \smath{c}.}
}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[c]
\frametitle{Rules for Freshness}
\begin{center}
\begin{tabular}{c}
Excerpt\\
(i.e.~only the interesting rules)
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[c]
\frametitle{Rules for Freshness}
\begin{center}
\begin{tabular}{c}
\colorbox{cream}{%
\smath{\infer{\nabla \vdash a\fresh b}{a\not= b}}}\\[5mm]
\colorbox{cream}{%
\smath{\infer{\nabla \vdash a\fresh\abst{a}{t}}{}}}\hspace{7mm}
\colorbox{cream}{%
\smath{\infer{\nabla \vdash a\fresh\abst{b}{t}}
{a\not= b\;\; & \nabla \vdash a\fresh t}}}\\[5mm]
\colorbox{cream}{%
\smath{\infer{\nabla \vdash a\fresh \pi\act X}
{(\pi^{-1}\act a\fresh X)\in\nabla}}}
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-4>[t]
\frametitle{$\approx$ is an Equivalence}
\mbox{}\\[5mm]
\begin{center}
\colorbox{cream}{\alert{Theorem:}
$\approx$ is an equivalence relation.}
\end{center}\bigskip
\only<1>{%
\begin{tabular}{ll}
(Reflexivity) & $\smath{\nabla\vdash t\approx t}$\\[2mm]
(Symmetry) & if $\smath{\nabla\vdash t_1\approx t_2}\;$
then $\;\smath{\nabla\vdash t_2\approx t_1}$\\[2mm]
(Transitivity) & if $\smath{\nabla\vdash t_1\approx t_2}\;$ and
$\;\smath{\nabla\vdash t_2\approx t_3}$\\
& then $\smath{\nabla\vdash t_1\approx t_3}$\\
\end{tabular}}
\only<2->{%
\begin{itemize}
\item<2-> \smath{\nabla \vdash t\approx t'} then \smath{\nabla \vdash \pi\act t\approx \pi\act t'}
\item<2-> \smath{\nabla \vdash a\fresh t} then
\smath{\nabla \vdash \pi\act a\fresh \pi\act t}
\item<3-> \smath{\nabla \vdash t\approx \pi\act t'} then
\smath{\nabla \vdash (\pi^{-1})\act t\approx t'}
\item<3-> \smath{\nabla \vdash a\fresh \pi\act t} then
\smath{\nabla \vdash (\pi^{-1})\act a\fresh t}
\item<4-> \smath{\nabla \vdash a\fresh t} and \smath{\nabla \vdash t\approx t'} then
\smath{\nabla \vdash a\fresh t'}
\end{itemize}
}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-4>
\frametitle{Comparison $=_\alpha$}
Traditionally \smath{=_\alpha} is defined as
\begin{center}
\colorbox{cream}{%
\begin{minipage}{9cm}
\raggedright least congruence which identifies \smath{\abst{a}{t}}
with \smath{\abst{b}{[a:=b]t}} provided \smath{b} is not free
in \smath{t}
\end{minipage}}
\end{center}
where \smath{[a:=b]t} replaces all free occurrences of\\
\smath{a} by \smath{b} in \smath{t}.
\bigskip
\only<2>{%
\begin{textblock}{13}(1.2,10)
For \alert{ground} terms:
\begin{center}
\colorbox{cream}{%
\begin{minipage}{9.0cm}
\begin{tabular}{@ {}rl}
\underline{Theorem:}
& \smath{t=_\alpha t'\;\;} if\hspace{-0.5mm}f~\smath{\;\;\emptyset \vdash t\approx t'}\\[2mm]
& \smath{a\not\in FA(t)\;\;} if\hspace{-0.5mm}f~\smath{\;\;\emptyset\vdash a\fresh t}
\end{tabular}
\end{minipage}}
\end{center}
\end{textblock}}
\only<3>{%
\begin{textblock}{13}(1.2,10)
In general \smath{=_\alpha} and \smath{\approx} are distinct!
\begin{center}
\colorbox{cream}{%
\begin{minipage}{6.0cm}
\smath{\abst{a}{X}=_\alpha \abst{b}{X}\;} but not\\[2mm]
\smath{\emptyset \vdash \abst{a}{X} \approx \abst{b}{X}\;} (\smath{a\not=b})
\end{minipage}}
\end{center}
\end{textblock}}
\only<4>{
\begin{textblock}{6}(1,2)
\begin{tikzpicture}
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
{\color{darkgray}
\begin{minipage}{10cm}\raggedright
That is a crucial point: if we had\\[-2mm]
\[\smath{\emptyset \vdash \abst{a}{X}\approx \abst{b}{X}}\mbox{,}\]
then applying $\smath{[X:=a]}$, $\smath{[X:=b]}$, $\ldots$\\
give two terms that are {\bf not} $\alpha$-equivalent.\\[3mm]
The freshness constraints $\smath{a\fresh X}$ and $\smath{b\fresh X}$
rule out the problematic substitutions. Therefore
\[\smath{\{a\fresh X,b\fresh X\} \vdash \abst{a}{X}\approx \abst{b}{X}}\]
does hold.
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-9>
\frametitle{Substitution}
\begin{tabular}{l@ {\hspace{8mm}}r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l@ {}}
\pgfuseshading{smallbluesphere} &
\smath{\sigma(\abst{a}{t})} & \smath{\dn} & \smath{\abst{a}{\sigma(t)}}\\[2mm]
\pgfuseshading{smallbluesphere} &
\smath{\sigma(\pi\act X)} & \smath{\dn} &
\smath{\begin{cases}%
\pi\;\act\;\sigma(X) & \!\!\text{if\ } \sigma(X)\not=X\\
\pi\act X & \!\!\text{otherwise}%
\end{cases}}\\[6mm]
\end{tabular}\bigskip\bigskip
\pause
\only<2-5>{
\only<2->{for example}
\def\arraystretch{1.3}
\begin{tabular}{@ {\hspace{14mm}}l@ {\hspace{3mm}}l}
\onslide<2->{\textcolor{white}{$\Rightarrow$}} &
\onslide<2->{\alt<3>{\smath{\underline{\abst{a}{\swap{a}{b}\act X}\;\,[X:=\pair{b}{Y}]}}}
{\smath{\abst{a}{\swap{a}{b}\act X}\;\,[X:=\pair{b}{Y}]}}}\\
\onslide<3->{\smath{\Rightarrow}} &
\onslide<3->{\alt<3,4>{\smath{\abst{a}{\underline{\swap{a}{b}\act X[X:=\pair{b}{Y}]}}}}
{\smath{\abst{a}{\swap{a}{b}\act X}[X:=\pair{b}{Y}]}}}\\
\onslide<4->{\smath{\Rightarrow}} &
\onslide<4->{\alt<4>{\smath{\abst{a}{\swap{a}{b}\act \underline{\pair{b}{Y}}}}}
{\smath{\abst{a}{\underline{\swap{a}{b}}\act \pair{b}{Y}}}}}\\
\onslide<5->{\smath{\Rightarrow}} &
\onslide<5->{\smath{\abst{a}{\pair{a}{\swap{a}{b}\act Y}}}}
\end{tabular}}
\only<6->
{\begin{tabular}{l@ {\hspace{8mm}}l@ {}}
\pgfuseshading{smallbluesphere} &
if \smath{\nabla\vdash t\approx t'} and\hspace{-2mm}\mbox{}
\raisebox{-2.7mm}{
\alt<7>{\begin{tikzpicture}
\draw (0,0) node[inner sep=1mm,fill=cream, very thick, draw=red, rounded corners=3mm]
{\smath{\;\nabla'\vdash\sigma(\nabla)\;}};
\end{tikzpicture}}
{\begin{tikzpicture}
\draw (0,0) node[inner sep=1mm,fill=white, very thick, draw=white, rounded corners=3mm]
{\smath{\;\nabla'\vdash\sigma(\nabla)\;}};
\end{tikzpicture}}}\\
& then \smath{\nabla'\vdash\sigma(t)\approx\sigma(t')}
\end{tabular}}
\only<9>
{\begin{tabular}{l@ {\hspace{8mm}}l@ {}}
\\[-4mm]
\pgfuseshading{smallbluesphere} &
\smath{\sigma(\pi\act t)=\pi\act\sigma(t)}
\end{tabular}}
\only<7>{
\begin{textblock}{6}(10,10.5)
\begin{tikzpicture}
\draw (0,0) node[inner sep=1mm,fill=cream, very thick, draw=red, rounded corners=2mm]
{\color{darkgray}
\begin{minipage}{3.8cm}\raggedright
this means\\[1mm]
\smath{\nabla'\vdash a\fresh\sigma(X)}\\[1mm]
holds for all\\[1mm]
\smath{(a\fresh X)\in\nabla}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1->
\frametitle{Equational Problems}
An equational problem
\[
\colorbox{cream}{\smath{t \eqprob t'}}
\]
is \alert{solved} by
\begin{center}
\begin{tabular}{ll}
\pgfuseshading{smallbluesphere} & a substitution \smath{\sigma} (terms for variables)\\[3mm]
\pgfuseshading{smallbluesphere} & {\bf and} a set of freshness assumptions \smath{\nabla}
\end{tabular}
\end{center}
so that \smath{\nabla\vdash \sigma(t)\approx \sigma(t')}.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1->
\frametitle{Conclusion}
\begin{itemize}
\item the user does not see anything of the raw level\medskip
\only<1>{\begin{center}
Lam a (Var a) \alert{$=$} Lam b (Var b)
\end{center}\bigskip}
\item<2-> we have not yet done function definitions (will come soon and
we hope to make improvements over the old way there too)\medskip
\item<3-> it took quite some time to get here, but it seems worthwhile
(Barendregt's variable convention is unsound in general,
found bugs in two paper proofs, quotient package, POPL 2011 tutorial)\medskip
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
(*<*)
end
(*>*)