theory LFex
imports "Parser"
begin
atom_decl name
atom_decl ident
ML {* val _ = cheat_fv_rsp := false *}
ML {* val _ = cheat_const_rsp := false *}
ML {* val _ = cheat_equivp := false *}
ML {* val _ = cheat_fv_eqvt := false *}
ML {* val _ = cheat_alpha_eqvt := false *}
nominal_datatype kind =
Type
| KPi "ty" n::"name" k::"kind" bind n in k
and ty =
TConst "ident"
| TApp "ty" "trm"
| TPi "ty" n::"name" t::"ty" bind n in t
and trm =
Const "ident"
| Var "name"
| App "trm" "trm"
| Lam "ty" n::"name" t::"trm" bind n in t
lemma ex_out:
"(\<exists>x. Z x \<and> Q) = (Q \<and> (\<exists>x. Z x))"
"(\<exists>x. Q \<and> Z x) = (Q \<and> (\<exists>x. Z x))"
"(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
"(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
apply (blast)+
done
lemma Collect_neg_conj: "{x. \<not>(P x \<and> Q x)} = {x. \<not>(P x)} \<union> {x. \<not>(Q x)}"
by (simp add: Collect_imp_eq Collect_neg_eq[symmetric])
lemma supp_eqs:
"supp Type = {}"
"supp kind = fv_kind kind \<Longrightarrow> supp (KPi ty name kind) = supp ty \<union> supp (Abs {atom name} kind)"
"supp (TConst i) = {atom i}"
"supp (TApp A M) = supp A \<union> supp M"
"supp ty2 = fv_ty ty2 \<Longrightarrow> supp (TPi ty1 name ty2) = supp ty1 \<union> supp (Abs {atom name} ty2)"
"supp (Const i) = {atom i}"
"supp (Var x) = {atom x}"
"supp (App M N) = supp M \<union> supp N"
"supp trm = fv_trm trm \<Longrightarrow> supp (Lam ty name trm) = supp ty \<union> supp (Abs {atom name} trm)"
apply(simp_all (no_asm) add: supp_def permute_set_eq atom_eqvt kind_ty_trm_perm)
apply(simp_all only: kind_ty_trm_eq_iff Abs_eq_iff alpha_gen)
apply(simp_all only: ex_out)
apply(simp_all only: eqvts[symmetric])
apply(simp_all only: Collect_neg_conj)
apply(simp_all only: supp_at_base[simplified supp_def] Un_commute Un_assoc)
apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric] Un_commute Un_assoc)
apply(simp_all add: Un_left_commute)
done
lemma supp_fv:
"supp t1 = fv_kind t1 \<and> supp t2 = fv_ty t2 \<and> supp t3 = fv_trm t3"
apply(induct rule: kind_ty_trm_induct)
apply(simp_all (no_asm) only: supp_eqs kind_ty_trm_fv)
apply(simp_all)
apply(simp_all add: supp_eqs)
apply(simp_all add: supp_Abs)
done
lemma supp_kind_ty_trm:
"supp Type = {}"
"supp (KPi A x K) = supp A \<union> (supp K - {atom x})"
"supp (TConst i) = {atom i}"
"supp (TApp A M) = supp A \<union> supp M"
"supp (TPi A x B) = supp A \<union> (supp B - {atom x})"
"supp (Const i) = {atom i}"
"supp (Var x) = {atom x}"
"supp (App M N) = supp M \<union> supp N"
"supp (Lam A x M) = supp A \<union> (supp M - {atom x})"
apply (simp_all add: supp_fv kind_ty_trm_fv)
end