(* Nominal Mutual Functions
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 14 January 2011)
Main entry points to the nominal function package.
*)
signature NOMINAL_FUNCTION =
sig
include FUNCTION_DATA
val add_nominal_function: (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> Function_Common.function_config ->
(Proof.context -> tactic) -> local_theory -> info * local_theory
val add_nominal_function_cmd: (binding * string option * mixfix) list ->
(Attrib.binding * string) list -> Function_Common.function_config ->
(Proof.context -> tactic) -> local_theory -> info * local_theory
val nominal_function: (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> Function_Common.function_config ->
local_theory -> Proof.state
val nominal_function_cmd: (binding * string option * mixfix) list ->
(Attrib.binding * string) list -> Function_Common.function_config ->
local_theory -> Proof.state
val setup : theory -> theory
val get_congs : Proof.context -> thm list
val get_info : Proof.context -> term -> info
end
structure Nominal_Function : NOMINAL_FUNCTION =
struct
open Function_Lib
open Function_Common
val simp_attribs = map (Attrib.internal o K)
[Simplifier.simp_add,
Code.add_default_eqn_attribute,
Nitpick_Simps.add]
val psimp_attribs = map (Attrib.internal o K)
[Nitpick_Psimps.add]
fun mk_defname fixes = fixes |> map (fst o fst) |> space_implode "_"
fun add_simps fnames post sort extra_qualify label mod_binding moreatts
simps lthy =
let
val spec = post simps
|> map (apfst (apsnd (fn ats => moreatts @ ats)))
|> map (apfst (apfst extra_qualify))
val (saved_spec_simps, lthy) =
fold_map Local_Theory.note spec lthy
val saved_simps = maps snd saved_spec_simps
val simps_by_f = sort saved_simps
fun add_for_f fname simps =
Local_Theory.note
((mod_binding (Binding.qualify true fname (Binding.name label)), []), simps)
#> snd
in
(saved_simps, fold2 add_for_f fnames simps_by_f lthy)
end
(* nominal *)
fun prepare_nominal_function is_external prep default_constraint fixspec eqns config lthy =
let
val constrn_fxs = map (fn (b, T, mx) => (b, SOME (the_default default_constraint T), mx))
val ((fixes0, spec0), ctxt') = prep (constrn_fxs fixspec) eqns lthy
val fixes = map (apfst (apfst Binding.name_of)) fixes0;
val spec = map (fn (bnd, prop) => (bnd, [prop])) spec0;
val (eqs, post, sort_cont, cnames) = get_preproc lthy config ctxt' fixes spec
val defname = mk_defname fixes
val FunctionConfig {partials, default, ...} = config
val _ =
if is_some default then Output.legacy_feature
"'function (default)'. Use 'partial_function'."
else ()
val ((goal_state, cont), lthy') =
Nominal_Function_Mutual.prepare_nominal_function_mutual config defname fixes eqs lthy
fun afterqed [[proof]] lthy =
let
val FunctionResult {fs, R, psimps, simple_pinducts,
termination, domintros, cases, ...} =
cont (Thm.close_derivation proof)
val fnames = map (fst o fst) fixes
fun qualify n = Binding.name n
|> Binding.qualify true defname
val conceal_partial = if partials then I else Binding.conceal
val addsmps = add_simps fnames post sort_cont
val (((psimps', pinducts'), (_, [termination'])), lthy) =
lthy
|> addsmps (conceal_partial o Binding.qualify false "partial")
"psimps" conceal_partial psimp_attribs psimps
||>> Local_Theory.note ((conceal_partial (qualify "pinduct"),
[Attrib.internal (K (Rule_Cases.case_names cnames)),
Attrib.internal (K (Rule_Cases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))]), simple_pinducts)
||>> Local_Theory.note ((Binding.conceal (qualify "termination"), []), [termination])
||> (snd o Local_Theory.note ((qualify "cases",
[Attrib.internal (K (Rule_Cases.case_names cnames))]), [cases]))
||> (case domintros of NONE => I | SOME thms =>
Local_Theory.note ((qualify "domintros", []), thms) #> snd)
val info = { add_simps=addsmps, case_names=cnames, psimps=psimps',
pinducts=snd pinducts', simps=NONE, inducts=NONE, termination=termination',
fs=fs, R=R, defname=defname, is_partial=true }
val _ =
if not is_external then ()
else Specification.print_consts lthy (K false) (map fst fixes)
in
(info,
lthy |> Local_Theory.declaration false (add_function_data o morph_function_data info))
end
in
((goal_state, afterqed), lthy')
end
fun gen_add_nominal_function is_external prep default_constraint fixspec eqns config tac lthy =
let
val ((goal_state, afterqed), lthy') =
prepare_nominal_function is_external prep default_constraint fixspec eqns config lthy
val pattern_thm =
case SINGLE (tac lthy') goal_state of
NONE => error "pattern completeness and compatibility proof failed"
| SOME st => Goal.finish lthy' st
in
lthy'
|> afterqed [[pattern_thm]]
end
val add_nominal_function =
gen_add_nominal_function false Specification.check_spec (Type_Infer.anyT HOLogic.typeS)
val add_nominal_function_cmd = gen_add_nominal_function true Specification.read_spec "_::type"
fun gen_nominal_function is_external prep default_constraint fixspec eqns config lthy =
let
val ((goal_state, afterqed), lthy') =
prepare_nominal_function is_external prep default_constraint fixspec eqns config lthy
in
lthy'
|> Proof.theorem NONE (snd oo afterqed) [[(Logic.unprotect (concl_of goal_state), [])]]
|> Proof.refine (Method.primitive_text (K goal_state)) |> Seq.hd
end
val nominal_function =
gen_nominal_function false Specification.check_spec (Type_Infer.anyT HOLogic.typeS)
val nominal_function_cmd = gen_nominal_function true Specification.read_spec "_::type"
fun add_case_cong n thy =
let
val cong = #case_cong (Datatype.the_info thy n)
|> safe_mk_meta_eq
in
Context.theory_map
(Function_Ctx_Tree.map_function_congs (Thm.add_thm cong)) thy
end
val setup_case_cong = Datatype.interpretation (K (fold add_case_cong))
(* setup *)
val setup =
Attrib.setup @{binding fundef_cong}
(Attrib.add_del Function_Ctx_Tree.cong_add Function_Ctx_Tree.cong_del)
"declaration of congruence rule for function definitions"
#> setup_case_cong
#> Function_Relation.setup
#> Function_Common.Termination_Simps.setup
val get_congs = Function_Ctx_Tree.get_function_congs
fun get_info ctxt t = Item_Net.retrieve (get_function ctxt) t
|> the_single |> snd
(* outer syntax *)
(* nominal *)
val _ =
Outer_Syntax.local_theory_to_proof "nominal_primrec" "define general recursive nominal functions"
Keyword.thy_goal
(function_parser default_config
>> (fn ((config, fixes), statements) => nominal_function_cmd fixes statements config))
end