\documentclass{acmconf}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{pdfsetup}
\urlstyle{rm}
\isabellestyle{it}
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
\renewcommand{\isasymbullet}{{\raisebox{-0.4mm}{\Large$\boldsymbol{\cdot}$}}}
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
\renewcommand{\isasymequiv}{$\dn$}
\renewcommand{\isasymiota}{}
\renewcommand{\isasymemptyset}{$\varnothing$}
%----------------- theorem definitions ----------
\newtheorem{Property}{Theorem}[section]
\newtheorem{Theorem}{Theorem}[section]
\newtheorem{Definition}[Theorem]{Definition}
\newtheorem{Example}{\it Example}[section]
%-------------------- environment definitions -----------------
\newenvironment{example}[0]{\begin{Example} \it}{\end{Example}}
\newenvironment{proof-of}[1]{{\em Proof of #1:}}{}
\begin{document}
\title{\LARGE\bf General Binding Structures in Nominal Isabelle,\\ or How to
Formalise Core-Haskell}
\maketitle
\maketitle
\begin{abstract}
Nominal Isabelle is a definitional extension of the Isabelle/HOL
theorem prover. It provides a proving infrastructure for
conveninet reasoning about programming language calculi. In this paper
we present an extension of Nominal Isabelle for dealing with general binding
structures. Such structures are ubiquitous in programming language research
and only very poorly handled by the well-known single abstraction in the
lambda-calculus. We give definitions for alpha-equivalence and establish
the reasoning structure for alpha-equated terms. For example we provide
a strong induction principle that has the variable convention already
built in.
\end{abstract}
\input{session}
\bibliographystyle{plain}
\bibliography{root}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: