(* Title: Quotient_Sum.thy
Author: Cezary Kaliszyk and Christian Urban
*)
theory Quotient_Sum
imports Quotient Quotient_Syntax
begin
section {* Quotient infrastructure for the sum type. *}
fun
sum_rel
where
"sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
fun
sum_map
where
"sum_map f1 f2 (Inl a) = Inl (f1 a)"
| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
declare [[map "+" = (sum_map, sum_rel)]]
text {* should probably be in Sum_Type.thy *}
lemma split_sum_all:
shows "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (Inl x)) \<and> (\<forall>x. P (Inr x))"
apply(auto)
apply(case_tac x)
apply(simp_all)
done
lemma sum_equivp[quot_equiv]:
assumes a: "equivp R1"
assumes b: "equivp R2"
shows "equivp (sum_rel R1 R2)"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
apply(simp_all add: split_sum_all)
apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
done
lemma sum_quotient[quot_thm]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
unfolding Quotient_def
apply(simp add: split_sum_all)
apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
using q1 q2
unfolding Quotient_def
apply(blast)+
done
lemma sum_Inl_rsp[quot_respect]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> sum_rel R1 R2) Inl Inl"
by simp
lemma sum_Inr_rsp[quot_respect]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(R2 ===> sum_rel R1 R2) Inr Inr"
by simp
lemma sum_Inl_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
apply(simp add: expand_fun_eq)
apply(simp add: Quotient_abs_rep[OF q1])
done
lemma sum_Inr_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
apply(simp add: expand_fun_eq)
apply(simp add: Quotient_abs_rep[OF q2])
done
lemma sum_map_id[id_simps]:
shows "sum_map id id = id"
by (simp add: expand_fun_eq split_sum_all)
lemma sum_rel_eq[id_simps]:
shows "sum_rel (op =) (op =) = (op =)"
by (simp add: expand_fun_eq split_sum_all)
end