prod_fv and its respectfullness and preservation.
(* Title: Nominal2_Eqvt
Author: Brian Huffman,
Author: Christian Urban
Equivariance, supp and freshness lemmas for various operators
(contains many, but not all such lemmas).
*)
theory Nominal2_Eqvt
imports Nominal2_Base
uses ("nominal_thmdecls.ML")
("nominal_permeq.ML")
("nominal_eqvt.ML")
begin
section {* Permsimp and Eqvt infrastructure *}
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_raw} *}
use "nominal_thmdecls.ML"
setup "Nominal_ThmDecls.setup"
text {* helper lemmas for the perm_simp *}
definition
"unpermute p = permute (- p)"
lemma eqvt_apply:
fixes f :: "'a::pt \<Rightarrow> 'b::pt"
and x :: "'a::pt"
shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)"
unfolding permute_fun_def by simp
lemma eqvt_lambda:
fixes f :: "'a::pt \<Rightarrow> 'b::pt"
shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))"
unfolding permute_fun_def unpermute_def by simp
lemma eqvt_bound:
shows "p \<bullet> unpermute p x \<equiv> x"
unfolding unpermute_def by simp
text {* provides perm_simp methods *}
use "nominal_permeq.ML"
setup Nominal_Permeq.setup
method_setup perm_simp =
{* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_simp_meth *}
{* pushes permutations inside. *}
method_setup perm_strict_simp =
{* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_strict_simp_meth *}
{* pushes permutations inside, raises an error if it cannot solve all permutations. *}
(* the normal version of this lemma would cause loops *)
lemma permute_eqvt_raw[eqvt_raw]:
shows "p \<bullet> permute \<equiv> permute"
apply(simp add: expand_fun_eq permute_fun_def)
apply(subst permute_eqvt)
apply(simp)
done
section {* Logical Operators *}
lemma eq_eqvt[eqvt]:
shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
unfolding permute_eq_iff permute_bool_def ..
lemma if_eqvt[eqvt]:
shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
by (simp add: permute_fun_def permute_bool_def)
lemma True_eqvt[eqvt]:
shows "p \<bullet> True = True"
unfolding permute_bool_def ..
lemma False_eqvt[eqvt]:
shows "p \<bullet> False = False"
unfolding permute_bool_def ..
lemma imp_eqvt[eqvt]:
shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
by (simp add: permute_bool_def)
lemma conj_eqvt[eqvt]:
shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
by (simp add: permute_bool_def)
lemma disj_eqvt[eqvt]:
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
by (simp add: permute_bool_def)
lemma Not_eqvt[eqvt]:
shows "p \<bullet> (\<not> A) \<longleftrightarrow> \<not> (p \<bullet> A)"
by (simp add: permute_bool_def)
lemma all_eqvt[eqvt]:
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
unfolding permute_fun_def permute_bool_def
by (auto, drule_tac x="p \<bullet> x" in spec, simp)
lemma all_eqvt2:
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma ex_eqvt[eqvt]:
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
unfolding permute_fun_def permute_bool_def
by (auto, rule_tac x="p \<bullet> x" in exI, simp)
lemma ex_eqvt2:
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma ex1_eqvt[eqvt]:
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
unfolding Ex1_def
by (perm_simp) (rule refl)
lemma ex1_eqvt2:
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma the_eqvt:
assumes unique: "\<exists>!x. P x"
shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))"
apply(rule the1_equality [symmetric])
apply(simp add: ex1_eqvt2[symmetric])
apply(simp add: permute_bool_def unique)
apply(simp add: permute_bool_def)
apply(rule theI'[OF unique])
done
section {* Set Operations *}
lemma mem_permute_iff:
shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
unfolding mem_def permute_fun_def permute_bool_def
by simp
lemma mem_eqvt[eqvt]:
shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
unfolding mem_def
by (perm_simp) (rule refl)
lemma not_mem_eqvt:
shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
by (perm_simp) (rule refl)
lemma Collect_eqvt[eqvt]:
shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
unfolding Collect_def permute_fun_def ..
lemma Collect_eqvt2:
shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
by (perm_simp add: permute_minus_cancel) (rule refl)
lemma Bex_eqvt[eqvt]:
shows "p \<bullet> (\<exists>x \<in> S. P x) = (\<exists>x \<in> (p \<bullet> S). (p \<bullet> P) x)"
unfolding Bex_def
by (perm_simp) (rule refl)
lemma Ball_eqvt[eqvt]:
shows "p \<bullet> (\<forall>x \<in> S. P x) = (\<forall>x \<in> (p \<bullet> S). (p \<bullet> P) x)"
unfolding Ball_def
by (perm_simp) (rule refl)
lemma empty_eqvt[eqvt]:
shows "p \<bullet> {} = {}"
unfolding empty_def
by (perm_simp) (rule refl)
lemma supp_set_empty:
shows "supp {} = {}"
unfolding supp_def
by (simp add: empty_eqvt)
lemma fresh_set_empty:
shows "a \<sharp> {}"
by (simp add: fresh_def supp_set_empty)
lemma UNIV_eqvt[eqvt]:
shows "p \<bullet> UNIV = UNIV"
unfolding UNIV_def
by (perm_simp) (rule refl)
lemma union_eqvt[eqvt]:
shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
unfolding Un_def
by (perm_simp) (rule refl)
lemma inter_eqvt[eqvt]:
shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
unfolding Int_def
by (perm_simp) (rule refl)
lemma Diff_eqvt[eqvt]:
fixes A B :: "'a::pt set"
shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
unfolding set_diff_eq
by (perm_simp) (rule refl)
lemma Compl_eqvt[eqvt]:
fixes A :: "'a::pt set"
shows "p \<bullet> (- A) = - (p \<bullet> A)"
unfolding Compl_eq_Diff_UNIV
by (perm_simp) (rule refl)
lemma insert_eqvt[eqvt]:
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
unfolding permute_set_eq_image image_insert ..
lemma vimage_eqvt[eqvt]:
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
unfolding vimage_def
by (perm_simp) (rule refl)
lemma Union_eqvt[eqvt]:
shows "p \<bullet> (\<Union> S) = \<Union> (p \<bullet> S)"
unfolding Union_eq
by (perm_simp) (rule refl)
lemma finite_permute_iff:
shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
unfolding permute_set_eq_vimage
using bij_permute by (rule finite_vimage_iff)
lemma finite_eqvt[eqvt]:
shows "p \<bullet> finite A = finite (p \<bullet> A)"
unfolding finite_permute_iff permute_bool_def ..
section {* List Operations *}
lemma append_eqvt[eqvt]:
shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
by (induct xs) auto
lemma supp_append:
shows "supp (xs @ ys) = supp xs \<union> supp ys"
by (induct xs) (auto simp add: supp_Nil supp_Cons)
lemma fresh_append:
shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
lemma rev_eqvt[eqvt]:
shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
by (induct xs) (simp_all add: append_eqvt)
lemma supp_rev:
shows "supp (rev xs) = supp xs"
by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)
lemma fresh_rev:
shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
lemma set_eqvt[eqvt]:
shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
(* needs finite support premise
lemma supp_set:
fixes x :: "'a::pt"
shows "supp (set xs) = supp xs"
*)
lemma map_eqvt[eqvt]:
shows "p \<bullet> (map f xs) = map (p \<bullet> f) (p \<bullet> xs)"
by (induct xs) (simp_all, simp only: permute_fun_app_eq)
section {* Product Operations *}
lemma fst_eqvt[eqvt]:
"p \<bullet> (fst x) = fst (p \<bullet> x)"
by (cases x) simp
lemma snd_eqvt[eqvt]:
"p \<bullet> (snd x) = snd (p \<bullet> x)"
by (cases x) simp
section {* Units *}
lemma supp_unit:
shows "supp () = {}"
by (simp add: supp_def)
lemma fresh_unit:
shows "a \<sharp> ()"
by (simp add: fresh_def supp_unit)
section {* additional eqvt lemmas *}
lemmas [eqvt] =
imp_eqvt [folded induct_implies_def]
(* nominal *)
supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt
(* datatypes *)
Pair_eqvt permute_list.simps
(* sets *)
image_eqvt
section {* Test cases *}
declare [[trace_eqvt = false]]
(* declare [[trace_eqvt = true]] *)
lemma
fixes B::"'a::pt"
shows "p \<bullet> (B = C)"
apply(perm_simp)
oops
lemma
fixes B::"bool"
shows "p \<bullet> (B = C)"
apply(perm_simp)
oops
lemma
fixes B::"bool"
shows "p \<bullet> (A \<longrightarrow> B = C)"
apply (perm_simp)
oops
lemma
shows "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo"
apply(perm_simp)
oops
lemma
shows "p \<bullet> (\<lambda>B::bool. A \<longrightarrow> (B = C)) = foo"
apply (perm_simp)
oops
lemma
shows "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
apply (perm_simp)
oops
lemma
shows "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
apply (perm_simp)
oops
lemma
fixes p q::"perm"
and x::"'a::pt"
shows "p \<bullet> (q \<bullet> x) = foo"
apply(perm_simp)
oops
lemma
fixes p q r::"perm"
and x::"'a::pt"
shows "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
apply(perm_simp)
oops
lemma
fixes p r::"perm"
shows "p \<bullet> (\<lambda>q::perm. q \<bullet> (r \<bullet> x)) = foo"
apply (perm_simp)
oops
lemma
fixes C D::"bool"
shows "B (p \<bullet> (C = D))"
apply(perm_simp)
oops
declare [[trace_eqvt = false]]
text {* Problem: there is no raw eqvt-rule for The *}
lemma "p \<bullet> (THE x. P x) = foo"
apply(perm_strict_simp exclude: The)
apply(perm_simp exclude: The)
oops
lemma
fixes P :: "(('b \<Rightarrow> bool) \<Rightarrow> ('b::pt)) \<Rightarrow> ('a::pt)"
shows "(p \<bullet> (P The)) = foo"
apply(perm_simp exclude: The)
oops
thm eqvts
thm eqvts_raw
ML {* Nominal_ThmDecls.is_eqvt @{context} @{term "supp"} *}
section {* Automatic equivariance procedure for inductive definitions *}
use "nominal_eqvt.ML"
end