tuned and added some comments to the code; added also an exception for early exit of the nominal2_cmd function
theory Tacs
imports Main
begin
(* General not-nominal/quotient functionality useful for proving *)
(* A version of case_rule_tac that takes more exhaust rules *)
ML {*
fun case_rules_tac ctxt0 s rules i st =
let
val (_, ctxt) = Variable.focus_subgoal i st ctxt0;
val ty = fastype_of (ProofContext.read_term_schematic ctxt s)
fun exhaust_ty thm = fastype_of (hd (Induct.vars_of (Thm.term_of (Thm.cprem_of thm 1))));
val ty_rules = filter (fn x => exhaust_ty x = ty) rules;
in
InductTacs.case_rule_tac ctxt0 s (hd ty_rules) i st
end
*}
ML {*
fun mk_conjl props =
fold (fn a => fn b =>
if a = @{term True} then b else
if b = @{term True} then a else
HOLogic.mk_conj (a, b)) (rev props) @{term True};
*}
ML {*
val split_conj_tac = REPEAT o etac conjE THEN' TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)
*}
(* Given function for buildng a goal for an input, prepares a
one common goals for all the inputs and proves it by induction
together *)
ML {*
fun prove_by_induct tys build_goal ind utac inputs ctxt =
let
val names = Datatype_Prop.make_tnames tys;
val (names', ctxt') = Variable.variant_fixes names ctxt;
val frees = map Free (names' ~~ tys);
val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ frees)) inputs ctxt';
val gls = flat gls_lists;
fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls;
val trm_gl_lists = map trm_gls_map frees;
val trm_gl_insts = map2 (fn n => fn l => [NONE, if l = [] then NONE else SOME n]) names' trm_gl_lists
val trm_gls = map mk_conjl trm_gl_lists;
val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj trm_gls);
fun tac {context,...} = (
InductTacs.induct_rules_tac context [(flat trm_gl_insts)] [ind]
THEN_ALL_NEW split_conj_tac THEN_ALL_NEW utac) 1
val th_loc = Goal.prove ctxt'' [] [] gl tac
val ths_loc = HOLogic.conj_elims th_loc
val ths = Variable.export ctxt'' ctxt ths_loc
in
filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths
end
*}
(* An induction for a single relation is "R x y \<Longrightarrow> P x y"
but for multiple relations is "(R1 x y \<longrightarrow> P x y) \<and> (R2 a b \<longrightarrow> P2 a b)" *)
ML {*
fun rel_indtac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct
*}
ML {*
fun prove_by_rel_induct alphas build_goal ind utac inputs ctxt =
let
val tys = map (domain_type o fastype_of) alphas;
val names = Datatype_Prop.make_tnames tys;
val (namesl, ctxt') = Variable.variant_fixes names ctxt;
val (namesr, ctxt'') = Variable.variant_fixes names ctxt';
val freesl = map Free (namesl ~~ tys);
val freesr = map Free (namesr ~~ tys);
val (gls_lists, ctxt'') = fold_map (build_goal (tys ~~ (freesl ~~ freesr))) inputs ctxt'';
val gls = flat gls_lists;
fun trm_gls_map t = filter (exists_subterm (fn s => s = t)) gls;
val trm_gl_lists = map trm_gls_map freesl;
val trm_gls = map mk_conjl trm_gl_lists;
val pgls = map
(fn ((alpha, gl), (l, r)) => HOLogic.mk_imp (alpha $ l $ r, gl))
((alphas ~~ trm_gls) ~~ (freesl ~~ freesr))
val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj pgls);
fun tac {context,...} = (rel_indtac ind THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
TRY o rtac @{thm TrueI} THEN_ALL_NEW utac context) 1
val th_loc = Goal.prove ctxt'' [] [] gl tac
val ths_loc = HOLogic.conj_elims th_loc
val ths = Variable.export ctxt'' ctxt ths_loc
in
filter (fn x => not (prop_of x = prop_of @{thm TrueI})) ths
end
*}
(* Code for transforming an inductive relation to a function *)
ML {*
fun rel_inj_tac dist_inj intrs elims =
SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE'
(rtac @{thm iffI} THEN' RANGE [
(eresolve_tac elims THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps dist_inj)
),
asm_full_simp_tac (HOL_ss addsimps intrs)])
*}
ML {*
fun build_rel_inj_gl thm =
let
val prop = prop_of thm;
val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop);
val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop);
fun list_conj l = foldr1 HOLogic.mk_conj l;
in
if hyps = [] then concl
else HOLogic.mk_eq (concl, list_conj hyps)
end;
*}
ML {*
fun build_rel_inj intrs dist_inj elims ctxt =
let
val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt;
val gls = map (HOLogic.mk_Trueprop o build_rel_inj_gl) thms_imp;
fun tac _ = rel_inj_tac dist_inj intrs elims 1;
val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls;
in
Variable.export ctxt' ctxt thms
end
*}
ML {*
fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm
*}
(* Introduces an implication and immediately eliminates it by cases *)
ML {*
fun imp_elim_tac case_rules =
Subgoal.FOCUS (fn {concl, context, ...} =>
case term_of concl of
_ $ (_ $ asm $ _) =>
let
fun filter_fn case_rule = (
case Logic.strip_assums_hyp (prop_of case_rule) of
((_ $ asmc) :: _) =>
let
val thy = ProofContext.theory_of context
in
Pattern.matches thy (asmc, asm)
end
| _ => false)
val matching_rules = filter filter_fn case_rules
in
(rtac impI THEN' rotate_tac (~1) THEN' eresolve_tac matching_rules) 1
end
| _ => no_tac)
*}
ML {*
fun is_ex (Const ("Ex", _) $ Abs _) = true
| is_ex _ = false;
*}
ML {*
fun dtyp_no_of_typ _ (TFree (n, _)) = error "dtyp_no_of_typ: Illegal free"
| dtyp_no_of_typ _ (TVar _) = error "dtyp_no_of_typ: Illegal schematic"
| dtyp_no_of_typ dts (Type (tname, Ts)) =
case try (find_index (curry op = tname o fst)) dts of
NONE => error "dtyp_no_of_typ: Illegal recursion"
| SOME i => i
*}
end