LamEx.thy
author Christian Urban <urbanc@in.tum.de>
Tue, 27 Oct 2009 14:14:30 +0100
changeset 203 7384115df9fd
parent 201 1ac36993cc71
child 217 9cc87d02190a
child 218 df05cd030d2f
permissions -rw-r--r--
added equiv-thm to the quot_info

theory LamEx
imports Nominal QuotMain
begin

atom_decl name

nominal_datatype rlam =
  rVar "name"
| rApp "rlam" "rlam"
| rLam "name" "rlam"

inductive 
  alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
where
  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
| a3: "\<lbrakk>t \<approx> ([(a,b)]\<bullet>s); a\<sharp>s\<rbrakk> \<Longrightarrow> rLam a t \<approx> rLam b s"

quotient lam = rlam / alpha
apply -
sorry

print_quotients

local_setup {*
  make_const_def @{binding Var} @{term "rVar"} NoSyn @{typ "rlam"} @{typ "lam"} #> snd #>
  make_const_def @{binding App} @{term "rApp"} NoSyn @{typ "rlam"} @{typ "lam"} #> snd #>
  make_const_def @{binding Lam} @{term "rLam"} NoSyn @{typ "rlam"} @{typ "lam"} #> snd
*}

lemma real_alpha:
  assumes "t = ([(a,b)]\<bullet>s)" "a\<sharp>s"
  shows "Lam a t = Lam b s"
sorry