Comment out examples with 'True' that do not work because function still does not work
header {* The Call-by-Value Lambda Calculus *}
theory Lt
imports "../../Nominal2"
begin
atom_decl name
nominal_datatype lt =
Var name ("_~" [150] 149)
| Abs x::"name" t::"lt" binds x in t
| App lt lt (infixl "$" 100)
nominal_primrec
subst :: "lt \<Rightarrow> lt \<Rightarrow> name \<Rightarrow> lt" ("_[_'/_]" [200,0,0] 190)
where
"(y~)[L/x] = (if y = x then L else y~)"
| "atom y\<sharp>L \<Longrightarrow> atom y\<sharp>x \<Longrightarrow> (Abs y M)[L/x] = Abs y (M[L/x])"
| "(M $ N)[L/x] = M[L/x] $ N[L/x]"
unfolding eqvt_def subst_graph_def
apply(perm_simp)
apply(auto)
apply(rule_tac y="a" and c="(aa, b)" in lt.strong_exhaust)
apply(simp_all add: fresh_star_def fresh_Pair)
apply blast+
apply (erule Abs_lst1_fcb)
apply (simp_all add: Abs_fresh_iff)[2]
apply(drule_tac a="atom (ya)" in fresh_eqvt_at)
apply(simp add: finite_supp fresh_Pair)
apply(simp_all add: fresh_Pair Abs_fresh_iff)
apply(subgoal_tac "(atom y \<rightleftharpoons> atom ya) \<bullet> La = La")
apply(subgoal_tac "(atom y \<rightleftharpoons> atom ya) \<bullet> xa = xa")
apply(simp add: atom_eqvt eqvt_at_def Abs1_eq_iff swap_commute)
apply (simp_all add: swap_fresh_fresh)
done
termination (eqvt) by lexicographic_order
lemma forget[simp]:
shows "atom x \<sharp> M \<Longrightarrow> M[s/x] = M"
by (nominal_induct M avoiding: x s rule: lt.strong_induct)
(auto simp add: lt.fresh fresh_at_base)
lemma [simp]: "supp ( M[V/(x::name)] ) <= (supp(M) - {atom x}) Un (supp V)"
by (nominal_induct M avoiding: x V rule: lt.strong_induct)
(auto simp add: lt.supp supp_at_base, blast, blast)
nominal_primrec
isValue:: "lt => bool"
where
"isValue (Var x) = True"
| "isValue (Abs y N) = True"
| "isValue (A $ B) = False"
unfolding eqvt_def isValue_graph_def
by (perm_simp, auto)
(erule lt.exhaust, auto)
termination (eqvt)
by (relation "measure size") (simp_all)
lemma is_Value_eqvt[eqvt]:
shows "p\<bullet>(isValue (M::lt)) = isValue (p\<bullet>M)"
by (induct M rule: lt.induct) (simp_all add: eqvts)
inductive
eval :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta> _" [80,80] 80)
where
evbeta: "\<lbrakk>atom x\<sharp>V; isValue V\<rbrakk> \<Longrightarrow> ((Abs x M) $ V) \<longrightarrow>\<^isub>\<beta> (M[V/x])"
| ev1: "\<lbrakk>isValue V; M \<longrightarrow>\<^isub>\<beta> M' \<rbrakk> \<Longrightarrow> (V $ M) \<longrightarrow>\<^isub>\<beta> (V $ M')"
| ev2: "M \<longrightarrow>\<^isub>\<beta> M' \<Longrightarrow> (M $ N) \<longrightarrow>\<^isub>\<beta> (M' $ N)"
equivariance eval
nominal_inductive eval
done
(*lemmas [simp] = lt.supp(2)*)
lemma closedev1: assumes "s \<longrightarrow>\<^isub>\<beta> t"
shows "supp t <= supp s"
using assms
by (induct, auto simp add: lt.supp)
lemma [simp]: "~ ((Abs x M) \<longrightarrow>\<^isub>\<beta> N)"
by (rule, erule eval.cases, simp_all)
lemma [simp]: assumes "M \<longrightarrow>\<^isub>\<beta> N" shows "~ isValue M"
using assms
by (cases, auto)
inductive
eval_star :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta>\<^sup>* _" [80,80] 80)
where
evs1: "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M"
| evs2: "\<lbrakk>M \<longrightarrow>\<^isub>\<beta> M'; M' \<longrightarrow>\<^isub>\<beta>\<^sup>* M'' \<rbrakk> \<Longrightarrow> M \<longrightarrow>\<^isub>\<beta>\<^sup>* M''"
lemma eval_evs: assumes *: "M \<longrightarrow>\<^isub>\<beta> M'" shows "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M'"
by (rule evs2, rule *, rule evs1)
lemma eval_trans[trans]:
assumes "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
and "M2 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
shows "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
using assms
by (induct, auto intro: evs2)
lemma evs3[rule_format]: assumes "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
shows "M2 \<longrightarrow>\<^isub>\<beta> M3 \<longrightarrow> M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
using assms
by (induct, auto intro: eval_evs evs2)
equivariance eval_star
lemma evbeta':
fixes x :: name
assumes "isValue V" and "atom x\<sharp>V" and "N = (M[V/x])"
shows "((Abs x M) $ V) \<longrightarrow>\<^isub>\<beta>\<^sup>* N"
using assms by simp (rule evs2, rule evbeta, simp_all add: evs1)
end