FSet.thy
author Christian Urban <urbanc@in.tum.de>
Sun, 25 Oct 2009 01:15:03 +0200
changeset 183 6acf9e001038
parent 180 fcacca9588b4
child 187 f8fc085db38f
permissions -rw-r--r--
proved the two lemmas in QuotScript (reformulated them without leading forall)

theory FSet
imports QuotMain
begin

inductive
  list_eq (infix "\<approx>" 50)
where
  "a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"

lemma list_eq_refl:
  shows "xs \<approx> xs"
  apply (induct xs)
   apply (auto intro: list_eq.intros)
  done

lemma equiv_list_eq:
  shows "EQUIV list_eq"
  unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
  apply(auto intro: list_eq.intros list_eq_refl)
  done

quotient fset = "'a list" / "list_eq"
  apply(rule equiv_list_eq)
  done

print_theorems

typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"

ML {* @{term "Abs_fset"} *}
local_setup {*
  make_const_def @{binding EMPTY} @{term "[]"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term Nil
term EMPTY
thm EMPTY_def


local_setup {*
  make_const_def @{binding INSERT} @{term "op #"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term Cons
term INSERT
thm INSERT_def

local_setup {*
  make_const_def @{binding UNION} @{term "op @"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term append
term UNION
thm UNION_def


thm QUOTIENT_fset

thm QUOT_TYPE_I_fset.thm11


fun
  membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
  m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"

fun
  card1 :: "'a list \<Rightarrow> nat"
where
  card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"

local_setup {*
  make_const_def @{binding card} @{term "card1"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term card1
term card
thm card_def

(* text {*
 Maybe make_const_def should require a theorem that says that the particular lifted function
 respects the relation. With it such a definition would be impossible:
 make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)

lemma card1_0:
  fixes a :: "'a list"
  shows "(card1 a = 0) = (a = [])"
  apply (induct a)
   apply (simp)
  apply (simp_all)
   apply meson
  apply (simp_all)
  done

lemma not_mem_card1:
  fixes x :: "'a"
  fixes xs :: "'a list"
  shows "~(x memb xs) \<Longrightarrow> card1 (x # xs) = Suc (card1 xs)"
  by simp


lemma mem_cons:
  fixes x :: "'a"
  fixes xs :: "'a list"
  assumes a : "x memb xs"
  shows "x # xs \<approx> xs"
  using a
  apply (induct xs)
  apply (auto intro: list_eq.intros)
  done

lemma card1_suc:
  fixes xs :: "'a list"
  fixes n :: "nat"
  assumes c: "card1 xs = Suc n"
  shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
  using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done

primrec
  fold1
where
  "fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
     (if ((!u v. (f u v = f v u))
      \<and> (!u v w. ((f u (f v w) = f (f u v) w))))
     then (
       if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
     ) else z)"

(* fold1_def is not usable, but: *)
thm fold1.simps

lemma fs1_strong_cases:
  fixes X :: "'a list"
  shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
  apply (induct X)
  apply (simp)
  apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
  done

local_setup {*
  make_const_def @{binding IN} @{term "membship"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

term membship
term IN
thm IN_def

ML {*
  val consts = [@{const_name "Nil"}, @{const_name "Cons"},
                @{const_name "membship"}, @{const_name "card1"},
                @{const_name "append"}, @{const_name "fold1"}];
*}

ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def} *}
ML {* val fset_defs_sym = map (fn t => symmetric (unabs_def @{context} t)) fset_defs *}

thm fun_map.simps
text {* Respectfullness *}

lemma memb_rsp:
  fixes z
  assumes a: "list_eq x y"
  shows "(z memb x) = (z memb y)"
  using a by induct auto

lemma ho_memb_rsp:
  "(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
  apply (simp add: FUN_REL.simps)
  apply (metis memb_rsp)
  done

lemma card1_rsp:
  fixes a b :: "'a list"
  assumes e: "a \<approx> b"
  shows "card1 a = card1 b"
  using e apply induct
  apply (simp_all add:memb_rsp)
  done

lemma ho_card1_rsp: "op \<approx> ===> op = card1 card1"
  apply (simp add: FUN_REL.simps)
  apply (metis card1_rsp)
  done

lemma cons_rsp:
  fixes z
  assumes a: "xs \<approx> ys"
  shows "(z # xs) \<approx> (z # ys)"
  using a by (rule list_eq.intros(5))

lemma ho_cons_rsp:
  "op = ===> op \<approx> ===> op \<approx> op # op #"
  apply (simp add: FUN_REL.simps)
  apply (metis cons_rsp)
  done

lemma append_rsp_fst:
  assumes a : "list_eq l1 l2"
  shows "list_eq (l1 @ s) (l2 @ s)"
  using a
  apply(induct)
  apply(auto intro: list_eq.intros)
  apply(rule list_eq_refl)
done

lemma "(a @ b) \<approx> (b @ a)"
sorry

lemma (* ho_append_rsp: *)
  "op \<approx> ===> op \<approx> ===> op \<approx> op @ op @"
sorry

thm list.induct
lemma list_induct_hol4:
  fixes P :: "'a list \<Rightarrow> bool"
  assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
  shows "\<forall>l. (P l)"
  using a
  apply (rule_tac allI)
  apply (induct_tac "l")
  apply (simp)
  apply (metis)
  done

ML {*
fun regularize thm rty rel rel_eqv lthy =
  let
    val g = build_regularize_goal thm rty rel lthy;
    fun tac ctxt =
       (asm_full_simp_tac ((Simplifier.context ctxt HOL_ss) addsimps
        [(@{thm equiv_res_forall} OF [rel_eqv]),
         (@{thm equiv_res_exists} OF [rel_eqv])])) THEN_ALL_NEW
         (((rtac @{thm RIGHT_RES_FORALL_REGULAR}) THEN' (RANGE [fn _ => all_tac, atac]) THEN'
         (MetisTools.metis_tac ctxt [])) ORELSE' (MetisTools.metis_tac ctxt []));
    val cthm = Goal.prove lthy [] [] g (fn x => tac (#context x) 1);
  in
    cthm OF [thm]
  end
*}


prove list_induct_r: {*
   build_regularize_goal (atomize_thm @{thm list_induct_hol4}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
  apply (simp only: equiv_res_forall[OF equiv_list_eq])
  thm RIGHT_RES_FORALL_REGULAR
  apply (rule RIGHT_RES_FORALL_REGULAR)
  prefer 2
  apply (assumption)
  apply (metis)
  done

ML {*
fun instantiate_tac thm = Subgoal.FOCUS (fn {concl, ...} =>
let
  val pat = Drule.strip_imp_concl (cprop_of thm)
  val insts = Thm.match (pat, concl)
in
  rtac (Drule.instantiate insts thm) 1
end
handle _ => no_tac
)
*}

ML {*
fun res_forall_rsp_tac ctxt =
  (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms FUN_REL.simps}))
  THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' rtac @{thm impI}
  THEN' instantiate_tac @{thm RES_FORALL_RSP} ctxt THEN'
  (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms FUN_REL.simps}))
*}

ML {*
fun res_exists_rsp_tac ctxt =
  (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms FUN_REL.simps}))
  THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' rtac @{thm impI}
  THEN' instantiate_tac @{thm RES_EXISTS_RSP} ctxt THEN'
  (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms FUN_REL.simps}))
*}


ML {*
fun quotient_tac quot_thm =
  REPEAT_ALL_NEW (FIRST' [
    rtac @{thm FUN_QUOTIENT},
    rtac quot_thm,
    rtac @{thm IDENTITY_QUOTIENT}
  ])
*}

ML {*
fun LAMBDA_RES_TAC ctxt i st =
  (case (term_of o #concl o fst) (Subgoal.focus ctxt i st) of
    (_ $ (_ $ (Abs(_,_,_))$(Abs(_,_,_)))) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | _ => fn _ => no_tac) i st
*}

ML {*
fun WEAK_LAMBDA_RES_TAC ctxt i st =
  (case (term_of o #concl o fst) (Subgoal.focus ctxt i st) of
    (_ $ (_ $ _$(Abs(_,_,_)))) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | (_ $ (_ $ (Abs(_,_,_))$_)) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | _ => fn _ => no_tac) i st
*}


ML {*
fun r_mk_comb_tac ctxt quot_thm reflex_thm trans_thm rsp_thms =
  (FIRST' [
    rtac @{thm FUN_QUOTIENT},
    rtac quot_thm,
    rtac @{thm IDENTITY_QUOTIENT},
    rtac @{thm ext},
    rtac trans_thm,
    LAMBDA_RES_TAC ctxt,
    res_forall_rsp_tac ctxt,
    res_exists_rsp_tac ctxt,
    (
     (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps (rsp_thms @ @{thms ho_all_prs ho_ex_prs})))
     THEN_ALL_NEW (fn _ => no_tac)
    ),
    (instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN' (RANGE [quotient_tac quot_thm])),
    rtac refl,
    (instantiate_tac @{thm APPLY_RSP} ctxt THEN' (RANGE [quotient_tac quot_thm, quotient_tac quot_thm])),
    rtac reflex_thm, 
    atac,
    (
     (simp_tac ((Simplifier.context @{context} HOL_ss) addsimps @{thms FUN_REL.simps}))
     THEN_ALL_NEW (fn _ => no_tac)
    ),
    WEAK_LAMBDA_RES_TAC ctxt
    ])
*}

ML {*
fun repabs_eq lthy thm constructors rty qty quot_thm reflex_thm trans_thm rsp_thms =
  let
    val rt = build_repabs_term lthy thm constructors rty qty;
    val rg = Logic.mk_equals ((Thm.prop_of thm), rt);
    fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN'
      (REPEAT_ALL_NEW (r_mk_comb_tac ctxt quot_thm reflex_thm trans_thm rsp_thms));
    val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1);
  in
    (rt, cthm, thm)
  end
*}

ML {*
fun repabs_eq2 lthy (rt, thm, othm) =
  let
    fun tac2 ctxt =
     (simp_tac ((Simplifier.context ctxt empty_ss) addsimps [symmetric thm]))
     THEN' (rtac othm);
    val cthm = Goal.prove lthy [] [] rt (fn x => tac2 (#context x) 1);
  in
    cthm
  end
*}


ML {*
fun r_mk_comb_tac_fset ctxt =
  r_mk_comb_tac ctxt @{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2} @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp}
*}


ML {* val thm = @{thm list_induct_r} OF [atomize_thm @{thm list_induct_hol4}] *}
ML {* val trm_r = build_repabs_goal @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val trm = build_repabs_term @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}

ML {* trm_r *}
prove list_induct_tr: trm_r
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done

prove list_induct_t: trm
apply (simp only: list_induct_tr[symmetric])
apply (tactic {* rtac thm 1 *})
done

thm m2
ML {* atomize_thm @{thm m2} *}

prove m2_r_p: {*
   build_regularize_goal (atomize_thm @{thm m2}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
  apply (simp add: equiv_res_forall[OF equiv_list_eq])
done

ML {* val m2_r = @{thm m2_r_p} OF [atomize_thm @{thm m2}] *}
ML {* val m2_t_g = build_repabs_goal @{context} m2_r consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val m2_t = build_repabs_term @{context} m2_r consts @{typ "'a list"} @{typ "'a fset"} *}
prove m2_t_p: m2_t_g
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done

prove m2_t: m2_t
apply (simp only: m2_t_p[symmetric])
apply (tactic {* rtac m2_r 1 *})
done

lemma id_apply2 [simp]: "id x \<equiv> x"
  by (simp add: id_def)

ML {*
   val lpis = @{thm LAMBDA_PRS} OF [@{thm QUOTIENT_fset}, @{thm IDENTITY_QUOTIENT}];
   val lpist = @{thm "HOL.sym"} OF [lpis];
   val lam_prs = MetaSimplifier.rewrite_rule [@{thm id_apply2}] lpist
*}

text {* the proper way to do it *}
ML {*
  fun findabs rty tm =
    case tm of
      Abs(_, T, b) =>
        let
          val b' = subst_bound ((Free ("x", T)), b);
          val tys = findabs rty b'
          val ty = fastype_of tm
        in if needs_lift rty ty then (ty :: tys) else tys
        end
    | f $ a => (findabs rty f) @ (findabs rty a)
    | _ => []
*}

ML {* findabs @{typ "'a list"} (prop_of (atomize_thm @{thm list_induct_hol4})) *}

ML {*
 val lpi = Drule.instantiate'
   [SOME @{ctyp "'a list"}, NONE, SOME @{ctyp "bool"}, NONE] [] @{thm LAMBDA_PRS};
*}
prove lambda_prs_l_b : {* concl_of lpi *}
apply (tactic {* compose_tac (false, @{thm LAMBDA_PRS}, 2) 1 *})
apply (tactic {* quotient_tac @{thm QUOTIENT_fset} 1 *})
apply (tactic {* quotient_tac @{thm QUOTIENT_fset} 1 *})
done
thm HOL.sym[OF lambda_prs_l_b,simplified]
ML {*
 val lpi = Drule.instantiate'
   [SOME @{ctyp "'a list \<Rightarrow> bool"}, NONE, SOME @{ctyp "bool"}, NONE] [] @{thm LAMBDA_PRS};
*}
prove lambda_prs_lb_b : {* concl_of lpi *}
apply (tactic {* compose_tac (false, @{thm LAMBDA_PRS}, 2) 1 *})
apply (tactic {* quotient_tac @{thm QUOTIENT_fset} 1 *})
apply (tactic {* quotient_tac @{thm QUOTIENT_fset} 1 *})
done
thm HOL.sym[OF lambda_prs_lb_b,simplified]

ML {*
fun eqsubst_thm ctxt thms thm =
  let
    val goalstate = Goal.init (Thm.cprop_of thm)
    val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
      NONE => error "eqsubst_thm"
    | SOME th => cprem_of th 1
    val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1
    val cgoal = cterm_of (ProofContext.theory_of ctxt) (Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a'))
    val rt = Toplevel.program (fn () => Goal.prove_internal [] cgoal (fn _ => tac));
  in
    Simplifier.rewrite_rule [rt] thm
  end
*}


ML {*
  fun simp_lam_prs lthy thm =
    simp_lam_prs lthy (eqsubst_thm lthy
      @{thms HOL.sym[OF lambda_prs_lb_b,simplified] HOL.sym[OF lambda_prs_l_b,simplified]}
    thm)
    handle _ => thm
*}

ML {* val m2_t' = eqsubst_thm @{context} [lam_prs] @{thm m2_t} *}

ML {*
  fun simp_allex_prs lthy thm =
    let
      val rwf = @{thm FORALL_PRS[OF QUOTIENT_fset]};
      val rwfs = @{thm "HOL.sym"} OF [spec OF [rwf]];
      val rwe = @{thm EXISTS_PRS[OF QUOTIENT_fset]};
      val rwes = @{thm "HOL.sym"} OF [spec OF [rwe]]
    in
      (simp_allex_prs lthy (eqsubst_thm lthy [rwfs, rwes] thm))
    end
    handle _ => thm
*}

ML {* val ithm = simp_allex_prs @{context} m2_t' *}
ML {* val rthm = MetaSimplifier.rewrite_rule fset_defs_sym ithm *}
ML {* ObjectLogic.rulify rthm *}


ML {* val card1_suc_f = Thm.freezeT (atomize_thm @{thm card1_suc}) *}

prove card1_suc_r_p: {*
   build_regularize_goal (atomize_thm @{thm card1_suc}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
  apply (simp add: equiv_res_forall[OF equiv_list_eq] equiv_res_exists[OF equiv_list_eq])
done

ML {* val card1_suc_r = @{thm card1_suc_r_p} OF [atomize_thm @{thm card1_suc}] *}
ML {* val card1_suc_t_g = build_repabs_goal @{context} card1_suc_r consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val card1_suc_t = build_repabs_term @{context} card1_suc_r consts @{typ "'a list"} @{typ "'a fset"} *}
prove card1_suc_t_p: card1_suc_t_g
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done

prove card1_suc_t: card1_suc_t
apply (simp only: card1_suc_t_p[symmetric])
apply (tactic {* rtac card1_suc_r 1 *})
done


ML {* val card1_suc_t_n = @{thm card1_suc_t} *}
ML {* val card1_suc_t' = eqsubst_thm @{context} @{thms HOL.sym[OF lambda_prs_l_b,simplified]} @{thm card1_suc_t} *}
ML {* val card1_suc_t'' = eqsubst_thm @{context} @{thms HOL.sym[OF lambda_prs_l_b,simplified]} card1_suc_t' *}
ML {* val ithm = simp_allex_prs @{context} card1_suc_t'' *}
ML {* val rthm = MetaSimplifier.rewrite_rule fset_defs_sym ithm *}
ML {* val qthm = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} rthm *}
ML {* ObjectLogic.rulify qthm *}

thm fold1.simps(2)
thm list.recs(2)

ML {* val ind_r_a = atomize_thm @{thm list_induct_hol4} *}
(*  prove {* build_regularize_goal ind_r_a @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
  ML_prf {*  fun tac ctxt =
       (asm_full_simp_tac ((Simplifier.context ctxt HOL_ss) addsimps
        [(@{thm equiv_res_forall} OF [@{thm equiv_list_eq}]),
         (@{thm equiv_res_exists} OF [@{thm equiv_list_eq}])])) THEN_ALL_NEW
         (((rtac @{thm RIGHT_RES_FORALL_REGULAR}) THEN' (RANGE [fn _ => all_tac, atac]) THEN'
         (MetisTools.metis_tac ctxt [])) ORELSE' (MetisTools.metis_tac ctxt [])); *}
  apply (tactic {* tac @{context} 1 *}) *)
ML {* val ind_r_r = regularize ind_r_a @{typ "'a List.list"} @{term "op \<approx>"} @{thm equiv_list_eq} @{context} *}
ML {*
  val rt = build_repabs_term @{context} ind_r_r consts @{typ "'a list"} @{typ "'a fset"}
  val rg = Logic.mk_equals ((Thm.prop_of ind_r_r), rt);
*}
(*prove rg
apply(atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})*)
ML {* val (g, thm, othm) =
  Toplevel.program (fn () =>
  repabs_eq @{context} ind_r_r consts @{typ "'a list"} @{typ "'a fset"}
   @{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
   @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp}
  )
*}
ML {*
    fun tac2 ctxt =
     (simp_tac ((Simplifier.context ctxt empty_ss) addsimps [symmetric thm]))
     THEN' (rtac othm); *}
(* ML {*    val cthm = Goal.prove @{context} [] [] g (fn x => tac2 (#context x) 1);
*} *)

ML {*
  val ind_r_t2 =
  Toplevel.program (fn () =>
    repabs_eq2 @{context} (g, thm, othm)
  )
*}
ML {* val ind_r_l = simp_lam_prs @{context} ind_r_t2 *}
lemma app_prs_for_induct: "(ABS_fset ---> id) f (REP_fset T1) = f T1"
  apply (simp add: fun_map.simps QUOT_TYPE_I_fset.thm10)
done

ML {* val ind_r_l1 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l *}
ML {* val ind_r_l2 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l1 *}
ML {* val ind_r_l3 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l2 *}
ML {* val ind_r_l4 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l3 *}
ML {* val ind_r_a = simp_allex_prs @{context} ind_r_l4 *}
ML {* val thm = @{thm FORALL_PRS[OF FUN_QUOTIENT[OF QUOTIENT_fset IDENTITY_QUOTIENT], symmetric]} *}
ML {* val ind_r_a1 = eqsubst_thm @{context} [thm] ind_r_a *}
ML {* val ind_r_d = MetaSimplifier.rewrite_rule fset_defs_sym ind_r_a1 *}
ML {* val ind_r_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} ind_r_d *}
ML {* ObjectLogic.rulify ind_r_s *}

ML {*
fun lift thm =
let
  val ind_r_a = atomize_thm thm;
  val ind_r_r = regularize ind_r_a @{typ "'a List.list"} @{term "op \<approx>"} @{thm equiv_list_eq} @{context};
  val (g, t, ot) =
    repabs_eq @{context} ind_r_r consts @{typ "'a list"} @{typ "'a fset"}
     @{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
     @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp};
  val ind_r_t = repabs_eq2 @{context} (g, t, ot);
  val ind_r_l = simp_lam_prs @{context} ind_r_t;
  val ind_r_a = simp_allex_prs @{context} ind_r_l;
  val ind_r_d = MetaSimplifier.rewrite_rule fset_defs_sym ind_r_a;
  val ind_r_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} ind_r_d
in
  ObjectLogic.rulify ind_r_s
end
*}

ML {* lift @{thm m2} *}
ML {* lift @{thm m1} *}
ML {* lift @{thm list_eq.intros(4)} *}
ML {* lift @{thm list_eq.intros(5)} *}
ML {* lift @{thm card1_suc} *}
(* ML {* lift @{thm append_assoc} *} *)

(*notation ( output) "prop" ("#_" [1000] 1000) *)
notation ( output) "Trueprop" ("#_" [1000] 1000)

(*
ML {*
  fun lift_theorem_fset_aux thm lthy =
    let
      val ((_, [novars]), lthy2) = Variable.import true [thm] lthy;
      val goal = build_repabs_goal @{context} novars consts @{typ "'a list"} @{typ "'a fset"};
      val cgoal = cterm_of @{theory} goal;
      val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal);
      val tac = transconv_fset_tac' @{context};
      val cthm = Goal.prove_internal [] cgoal2 (fn _ => tac);
      val nthm = MetaSimplifier.rewrite_rule [symmetric cthm] (snd (no_vars (Context.Theory @{theory}, thm)))
      val nthm2 = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same QUOT_TYPE_I_fset.thm10} nthm;
      val [nthm3] = ProofContext.export lthy2 lthy [nthm2]
    in
      nthm3
    end
*}
*)

(*
ML {* lift_theorem_fset_aux @{thm m1} @{context} *}
ML {*
  fun lift_theorem_fset name thm lthy =
    let
      val lifted_thm = lift_theorem_fset_aux thm lthy;
      val (_, lthy2) = note (name, lifted_thm) lthy;
    in
      lthy2
    end;
*}
*)

(* These do not work without proper definitions to rewrite back *)
local_setup {* lift_theorem_fset @{binding "m1_lift"} @{thm m1} *}
local_setup {* lift_theorem_fset @{binding "leqi4_lift"} @{thm list_eq.intros(4)} *}
local_setup {* lift_theorem_fset @{binding "leqi5_lift"} @{thm list_eq.intros(5)} *}
local_setup {* lift_theorem_fset @{binding "m2_lift"} @{thm m2} *}
thm m1_lift
thm leqi4_lift
thm leqi5_lift
thm m2_lift
ML {* @{thm card1_suc_r} OF [card1_suc_f] *}
(*ML {* Toplevel.program (fn () => lift_theorem_fset @{binding "card_suc"}
     (@{thm card1_suc_r} OF [card1_suc_f]) @{context}) *}*)
(*local_setup {* lift_theorem_fset @{binding "card_suc"} @{thm card1_suc} *}*)

thm leqi4_lift
ML {*
  val (nam, typ) = hd (Term.add_vars (prop_of @{thm leqi4_lift}) [])
  val (_, l) = dest_Type typ
  val t = Type ("FSet.fset", l)
  val v = Var (nam, t)
  val cv = cterm_of @{theory} ((term_of @{cpat "REP_fset"}) $ v)
*}

ML {*
  Toplevel.program (fn () =>
    MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
      Drule.instantiate' [] [NONE, SOME (cv)] @{thm leqi4_lift}
    )
  )
*}



(*prove aaa: {* (Thm.term_of cgoal2) *}
  apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
  apply (atomize(full))
  apply (tactic {* transconv_fset_tac' @{context} 1 *})
  done*)

(*
datatype obj1 =
  OVAR1 "string"
| OBJ1 "(string * (string \<Rightarrow> obj1)) list"
| INVOKE1 "obj1 \<Rightarrow> string"
| UPDATE1 "obj1 \<Rightarrow> string \<Rightarrow> (string \<Rightarrow> obj1)"
*)

end