Nominal/Term6.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 03 Mar 2010 11:50:25 +0100
changeset 1327 670701b19e8e
parent 1300 22a084c9316b
permissions -rw-r--r--
added ACM style file for ICFP

theory Term6
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" "../Attic/Prove"
begin

atom_decl name

(* example with a bn function defined over the type itself, NOT respectful. *)

datatype rtrm6 =
  rVr6 "name"
| rLm6 "name" "rtrm6" --"bind name in rtrm6"
| rLt6 "rtrm6" "rtrm6" --"bind (bv6 left) in (right)"

primrec
  rbv6
where
  "rbv6 (rVr6 n) = {}"
| "rbv6 (rLm6 n t) = {atom n} \<union> rbv6 t"
| "rbv6 (rLt6 l r) = rbv6 l \<union> rbv6 r"

setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term6.rtrm6") 1 *}
print_theorems

local_setup {* snd o define_fv_alpha (Datatype.the_info @{theory} "Term6.rtrm6") [
  [[], [(NONE, 0, 1)], [(SOME @{term rbv6}, 0, 1)]]] *}
notation alpha_rtrm6 ("_ \<approx>6 _" [100, 100] 100)
thm alpha_rtrm6.intros

local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha6_inj}, []), (build_alpha_inj @{thms alpha_rtrm6.intros} @{thms rtrm6.distinct rtrm6.inject} @{thms alpha_rtrm6.cases} ctxt)) ctxt)) *}
thm alpha6_inj

local_setup {*
snd o (build_eqvts @{binding rbv6_eqvt} [@{term rbv6}] [@{term "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"}] (@{thms rbv6.simps permute_rtrm6.simps}) @{thm rtrm6.induct})
*}

local_setup {*
snd o build_eqvts @{binding fv_rtrm6_eqvt} [@{term fv_rtrm6}] [@{term "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"}] (@{thms fv_rtrm6.simps permute_rtrm6.simps}) @{thm rtrm6.induct}
*}

local_setup {*
(fn ctxt => snd (Local_Theory.note ((@{binding alpha6_eqvt}, []),
  build_alpha_eqvts [@{term alpha_rtrm6}] [@{term "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"}] @{thms permute_rtrm6.simps alpha6_inj} @{thm alpha_rtrm6.induct} ctxt) ctxt))
*}
thm alpha6_eqvt
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha6_equivp}, []),
  (build_equivps [@{term alpha_rtrm6}] @{thm rtrm6.induct} @{thm alpha_rtrm6.induct} @{thms rtrm6.inject} @{thms alpha6_inj} @{thms rtrm6.distinct} @{thms alpha_rtrm6.cases} @{thms alpha6_eqvt} ctxt)) ctxt)) *}
thm alpha6_equivp

quotient_type
  trm6 = rtrm6 / alpha_rtrm6
  by (auto intro: alpha6_equivp)

local_setup {*
(fn ctxt => ctxt
 |> snd o (Quotient_Def.quotient_lift_const ("Vr6", @{term rVr6}))
 |> snd o (Quotient_Def.quotient_lift_const ("Lm6", @{term rLm6}))
 |> snd o (Quotient_Def.quotient_lift_const ("Lt6", @{term rLt6}))
 |> snd o (Quotient_Def.quotient_lift_const ("fv_trm6", @{term fv_rtrm6}))
 |> snd o (Quotient_Def.quotient_lift_const ("bv6", @{term rbv6})))
*}
print_theorems

lemma [quot_respect]:
  "(op = ===> alpha_rtrm6 ===> alpha_rtrm6) permute permute"
by (auto simp add: alpha6_eqvt)

(* Definitely not true , see lemma below *)
lemma [quot_respect]:"(alpha_rtrm6 ===> op =) rbv6 rbv6"
apply simp apply clarify
apply (erule alpha_rtrm6.induct)
oops

lemma "(a :: name) \<noteq> b \<Longrightarrow> \<not> (alpha_rtrm6 ===> op =) rbv6 rbv6"
apply simp
apply (rule_tac x="rLm6 (a::name) (rVr6 (a :: name))" in  exI)
apply (rule_tac x="rLm6 (b::name) (rVr6 (b :: name))" in  exI)
apply simp
apply (simp add: alpha6_inj)
apply (rule_tac x="(a \<leftrightarrow> b)" in  exI)
apply (simp add: alpha_gen fresh_star_def)
apply (simp add: alpha6_inj)
done

lemma fv6_rsp: "x \<approx>6 y \<Longrightarrow> fv_rtrm6 x = fv_rtrm6 y"
apply (induct_tac x y rule: alpha_rtrm6.induct)
apply simp_all
apply (erule exE)
apply (simp_all add: alpha_gen)
done

lemma [quot_respect]:"(alpha_rtrm6 ===> op =) fv_rtrm6 fv_rtrm6"
by (simp add: fv6_rsp)

lemma [quot_respect]:
 "(op = ===> alpha_rtrm6) rVr6 rVr6"
 "(op = ===> alpha_rtrm6 ===> alpha_rtrm6) rLm6 rLm6"
apply auto
apply (simp_all add: alpha6_inj)
apply (rule_tac x="0::perm" in exI)
apply (simp add: alpha_gen fv6_rsp fresh_star_def fresh_zero_perm)
done

lemma [quot_respect]:
 "(alpha_rtrm6 ===> alpha_rtrm6 ===> alpha_rtrm6) rLt6 rLt6"
apply auto
apply (simp_all add: alpha6_inj)
apply (rule_tac [!] x="0::perm" in exI)
apply (simp_all add: alpha_gen fresh_star_def fresh_zero_perm)
(* needs rbv6_rsp *)
oops

instantiation trm6 :: pt begin

quotient_definition
  "permute_trm6 :: perm \<Rightarrow> trm6 \<Rightarrow> trm6"
is
  "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"

instance
apply default
sorry
end

lemma lifted_induct:
"\<lbrakk>x1 = x2; \<And>name namea. name = namea \<Longrightarrow> P (Vr6 name) (Vr6 namea);
 \<And>name rtrm6 namea rtrm6a.
    \<lbrakk>True;
     \<exists>pi. fv_trm6 rtrm6 - {atom name} = fv_trm6 rtrm6a - {atom namea} \<and>
          (fv_trm6 rtrm6 - {atom name}) \<sharp>* pi \<and> pi \<bullet> rtrm6 = rtrm6a \<and> P (pi \<bullet> rtrm6) rtrm6a\<rbrakk>
    \<Longrightarrow> P (Lm6 name rtrm6) (Lm6 namea rtrm6a);
 \<And>rtrm61 rtrm61a rtrm62 rtrm62a.
    \<lbrakk>rtrm61 = rtrm61a; P rtrm61 rtrm61a;
     \<exists>pi. fv_trm6 rtrm62 - bv6 rtrm61 = fv_trm6 rtrm62a - bv6 rtrm61a \<and>
          (fv_trm6 rtrm62 - bv6 rtrm61) \<sharp>* pi \<and> pi \<bullet> rtrm62 = rtrm62a \<and> P (pi \<bullet> rtrm62) rtrm62a\<rbrakk>
    \<Longrightarrow> P (Lt6 rtrm61 rtrm62) (Lt6 rtrm61a rtrm62a)\<rbrakk>
\<Longrightarrow> P x1 x2"
apply (lifting alpha_rtrm6.induct[unfolded alpha_gen])
apply injection
(* notice unsolvable goals: (alpha_rtrm6 ===> op =) rbv6 rbv6 *)
oops

lemma lifted_inject_a3:
"(Lt6 rtrm61 rtrm62 = Lt6 rtrm61a rtrm62a) =
(rtrm61 = rtrm61a \<and>
 (\<exists>pi. fv_trm6 rtrm62 - bv6 rtrm61 = fv_trm6 rtrm62a - bv6 rtrm61a \<and>
       (fv_trm6 rtrm62 - bv6 rtrm61) \<sharp>* pi \<and> pi \<bullet> rtrm62 = rtrm62a))"
apply(lifting alpha6_inj(3)[unfolded alpha_gen])
apply injection
(* notice unsolvable goals: (alpha_rtrm6 ===> op =) rbv6 rbv6 *)
oops




end