freshness theorem in strong exhausts; (temporarily includes a cheat_tac to make all tests go through)
theory Foo2
imports "../Nominal2"
begin
(*
Contrived example that has more than one
binding clause
*)
atom_decl name
nominal_datatype foo: trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let1 a1::"assg" t1::"trm" a2::"assg" t2::"trm" bind "bn a1" in t1, bind "bn a2" in t2
| Let2 x::"name" y::"name" t1::"trm" t2::"trm" bind x y in t1, bind y in t2
and assg =
As_Nil
| As "name" x::"name" t::"trm" "assg"
binder
bn::"assg \<Rightarrow> atom list"
where
"bn (As x y t a) = [atom x] @ bn a"
| "bn (As_Nil) = []"
thm foo.bn_defs
thm foo.permute_bn
thm foo.perm_bn_alpha
thm foo.perm_bn_simps
thm foo.bn_finite
thm foo.distinct
thm foo.induct
thm foo.inducts
thm foo.exhaust
thm foo.fv_defs
thm foo.bn_defs
thm foo.perm_simps
thm foo.eq_iff
thm foo.fv_bn_eqvt
thm foo.size_eqvt
thm foo.supports
thm foo.fsupp
thm foo.supp
thm foo.fresh
(*
lemma ex_prop:
shows "\<exists>n::nat. Suc n = n"
sorry
lemma test:
shows "True"
apply -
ML_prf {*
val (x, ctxt') = Obtain.result (K (
EVERY [print_tac "test",
etac exE 1,
print_tac "end"]))
@{thms ex_prop} @{context};
ProofContext.verbose := true;
ProofContext.pretty_context ctxt'
|> Pretty.block
|> Pretty.writeln
*}
*)
text {* *}
(*
thm at_set_avoiding1[THEN exE]
lemma Let1_rename:
fixes c::"'a::fs"
shows "\<exists>name' trm'. {atom name'} \<sharp>* c \<and> Lam name trm = Lam name' trm'"
apply(simp only: foo.eq_iff)
apply(rule at_set_avoiding1[where c="(c, atom name, trm)" and xs="set [atom name]", THEN exE])
apply(simp)
apply(simp add: finite_supp)
apply(perm_simp)
apply(rule Abs_rename_list[THEN exE])
apply(simp only: set_eqvt)
apply
sorry
*)
thm foo.exhaust
ML {*
fun strip_prems_concl trm =
(Logic.strip_imp_prems trm, Logic.strip_imp_concl trm)
*}
ML {*
@{thms foo.exhaust}
|> map prop_of
|> map strip_prems_concl
|> map fst
|> map (map (Syntax.string_of_term @{context}))
|> map cat_lines
|> cat_lines
|> writeln
*}
lemma test6:
fixes c::"'a::fs"
assumes "\<exists>name. y = Var name \<Longrightarrow> P"
and "\<exists>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P"
and "\<exists>a1 trm1 a2 trm2. ((set (bn a1)) \<union> (set (bn a2))) \<sharp>* c \<and> y = Let1 a1 trm1 a2 trm2 \<Longrightarrow> P"
and "\<exists>x1 x2 trm1 trm2. {atom x1, atom x2} \<sharp>* c \<and> y = Let2 x1 x2 trm1 trm2 \<Longrightarrow> P"
shows "P"
apply(rule_tac foo.exhaust(1))
apply(rule assms(1))
apply(rule exI)+
apply(assumption)
apply(rule assms(2))
apply(rule exI)+
apply(assumption)
(* lam case *)
apply(subgoal_tac "\<exists>p. (p \<bullet> {atom name}) \<sharp>* (c, name, trm)")
apply(erule exE)
apply(insert Abs_rename_list)[1]
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="[atom name]" in meta_spec)
apply(drule_tac x="trm" in meta_spec)
apply(simp only: fresh_star_Pair set.simps)
apply(drule meta_mp)
apply(simp add: fresh_star_def fresh_Nil fresh_Cons fresh_atom_at_base)
apply(erule exE)
apply(rule assms(3))
apply(perm_simp)
apply(erule conjE)+
apply(assumption)
apply(clarify)
apply(simp (no_asm) add: foo.eq_iff)
apply(perm_simp)
apply(assumption)
apply(rule at_set_avoiding1)
apply(simp)
apply(simp add: finite_supp)
(* let1 case *)
apply(subgoal_tac "\<exists>p. (p \<bullet> ((set (bn assg1)) \<union> (set (bn assg2)))) \<sharp>* (c, bn assg1, bn assg2, trm1, trm2)")
apply(erule exE)
apply(rule assms(4))
apply(simp only: foo.eq_iff)
apply(insert Abs_rename_list)[1]
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="bn assg1" in meta_spec)
apply(drule_tac x="trm1" in meta_spec)
apply(insert Abs_rename_list)[1]
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="bn assg2" in meta_spec)
apply(drule_tac x="trm2" in meta_spec)
apply(drule meta_mp)
apply(simp only: union_eqvt fresh_star_Pair set.simps fresh_star_Un, simp)
apply(drule meta_mp)
apply(simp only: union_eqvt fresh_star_Pair set.simps fresh_star_Un, simp)
apply(erule exE)+
apply(rule exI)+
apply(perm_simp add: foo.permute_bn)
apply(rule conjI)
apply(simp add: fresh_star_Pair fresh_star_Un)
apply(erule conjE)+
apply(rule conjI)
apply(assumption)
apply(rotate_tac 4)
apply(assumption)
apply(rule conjI)
apply(assumption)
apply(rule conjI)
apply(rule foo.perm_bn_alpha)
apply(rule conjI)
apply(assumption)
apply(rule foo.perm_bn_alpha)
apply(rule at_set_avoiding1)
apply(simp)
apply(simp add: finite_supp)
(* let2 case *)
apply(subgoal_tac "\<exists>p. (p \<bullet> ({atom name1} \<union> {atom name2})) \<sharp>* (c, atom name1, atom name2, trm1, trm2)")
apply(erule exE)
apply(rule assms(5))
apply(simp only:)
apply(simp only: foo.eq_iff)
apply(insert Abs_rename_list)[1]
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="[atom name1] @ [atom name2]" in meta_spec)
apply(drule_tac x="trm1" in meta_spec)
apply(insert Abs_rename_list)[1]
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="[atom name2]" in meta_spec)
apply(drule_tac x="trm2" in meta_spec)
apply(drule meta_mp)
apply(simp only: union_eqvt fresh_star_Pair fresh_star_list fresh_star_Un, simp)
apply(auto)[1]
apply(perm_simp)
apply(auto simp add: fresh_star_def)[1]
apply(perm_simp)
apply(auto simp add: fresh_star_def)[1]
apply(perm_simp)
apply(auto simp add: fresh_star_def)[1]
apply(drule meta_mp)
apply(perm_simp)
apply(auto simp add: fresh_star_def fresh_Pair fresh_Nil fresh_Cons)[1]
apply(erule exE)+
apply(rule exI)+
apply(perm_simp add: foo.permute_bn)
apply(rule conjI)
prefer 2
apply(rule conjI)
apply(assumption)
apply(assumption)
apply(simp add: fresh_star_Pair)
apply(simp add: fresh_star_def)
apply(rule at_set_avoiding1)
apply(simp)
apply(simp add: finite_supp)
done
lemma test5:
fixes c::"'a::fs"
assumes "\<And>name. y = Var name \<Longrightarrow> P"
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P"
and "\<And>a1 trm1 a2 trm2. \<lbrakk>((set (bn a1)) \<union> (set (bn a2))) \<sharp>* c; y = Let1 a1 trm1 a2 trm2\<rbrakk> \<Longrightarrow> P"
and "\<And>x1 x2 trm1 trm2. \<lbrakk>{atom x1, atom x2} \<sharp>* c; y = Let2 x1 x2 trm1 trm2\<rbrakk> \<Longrightarrow> P"
shows "P"
apply(rule_tac y="y" in test6)
apply(erule exE)+
apply(rule assms(1))
apply(assumption)
apply(erule exE)+
apply(rule assms(2))
apply(assumption)
apply(rule assms(3))
apply(auto)[2]
apply(erule exE)+
apply(rule assms(4))
apply(auto)[2]
apply(erule exE)+
apply(rule assms(5))
apply(auto)[2]
done
lemma strong_induct:
fixes c :: "'a :: fs"
and assg :: assg and trm :: trm
assumes a0: "\<And>name c. P1 c (Var name)"
and a1: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (App trm1 trm2)"
and a2: "\<And>name trm c. (\<And>d. P1 d trm) \<Longrightarrow> P1 c (Lam name trm)"
and a3: "\<And>a1 t1 a2 t2 c.
\<lbrakk>((set (bn a1)) \<union> (set (bn a2))) \<sharp>* c; \<And>d. P2 c a1; \<And>d. P1 d t1; \<And>d. P2 d a2; \<And>d. P1 d t2\<rbrakk>
\<Longrightarrow> P1 c (Let1 a1 t1 a2 t2)"
and a4: "\<And>n1 n2 t1 t2 c.
\<lbrakk>{atom n1, atom n2} \<sharp>* c; \<And>d. P1 d t1; \<And>d. P1 d t2\<rbrakk> \<Longrightarrow> P1 c (Let2 n1 n2 t1 t2)"
and a5: "\<And>c. P2 c As_Nil"
and a6: "\<And>name1 name2 trm assg c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d assg\<rbrakk> \<Longrightarrow> P2 c (As name1 name2 trm assg)"
shows "P1 c trm" "P2 c assg"
using assms
apply(induction_schema)
apply(rule_tac y="trm" and c="c" in test5)
apply(simp_all)[5]
apply(rule_tac y="assg" in foo.exhaust(2))
apply(simp_all)[2]
apply(relation "measure (sum_case (size o snd) (size o snd))")
apply(simp_all add: foo.size)
done
end