Slides/SlidesA.thy
author Christian Urban <urbanc@in.tum.de>
Thu, 19 Apr 2018 13:58:22 +0100
branchNominal2-Isabelle2016-1
changeset 3246 66114fa3d2ee
parent 3121 878de0084b62
permissions -rw-r--r--
updated to Isabelle 2016-1

(*<*)
theory SlidesA
imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
begin

notation (latex output)
  set ("_") and
  Cons  ("_::/_" [66,65] 65) 

(*>*)


text_raw {*
  %% was \begin{colormixin}{20!averagebackgroundcolor}
  %% 
  %% is \begin{colormixin}{50!averagebackgroundcolor}
  \renewcommand{\slidecaption}{Warsaw, 9 February 2012}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{%
  \begin{tabular}{@ {}c@ {}}
  \Huge Nominal Techniques\\[0mm]
  \Huge in Isabelle\\
  \Large or, How Not to be Intimidated by the\\[-3mm]
  \Large Variable Convention\\[-5mm]
  \end{tabular}}
  
  \begin{center}
  Christian Urban\\[1mm]
  King's College London\\[-6mm]\mbox{}
  \end{center}
 
  \begin{center}
  \begin{block}{}
  \color{gray}
  \small
  {\bf\mbox{}\hspace{-1.5mm}Variable Convention:}\\[1mm] 
  If $M_1,\ldots,M_n$ occur in a certain mathematical context
  (e.g. definition, proof), then in these terms all bound variables 
  are chosen to be different from the free variables.\\[2mm]
  
  \footnotesize\hfill Barendregt in ``The Lambda-Calculus: Its Syntax and Semantics''
  \end{block}
  \end{center}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->[c]
  \frametitle{Nominal Techniques}

  \begin{itemize}
  \item Andy Pitts found out that permutations\\ preserve $\alpha$-equivalence:
  \begin{center}
  \smath{t_1 \approx_{\alpha} t_2 \quad \Rightarrow\quad \pi \act t_1 \approx_{\alpha} \pi \act t_2} 
  \end{center}

  \item also permutations and substitutions commute, if you suspend permutations
  in front of variables
  \begin{center}
  \smath{\pi\act\sigma(t) = \sigma(\pi\act t)}
  \end{center}\medskip\medskip

  \item this allowed us to define Nominal Unification\medskip
  \begin{center}
  \smath{\nabla \vdash t \approx^?_{\alpha} t'}\hspace{2cm}
  \smath{\nabla \vdash a \fresh^? t}
  \end{center}
  \end{itemize}

  \begin{textblock}{3}(13.1,1.1)
  \includegraphics[scale=0.26]{andrewpitts.jpg}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{Nominal Isabelle}

  \begin{itemize}
  \item a theory about atoms and permutations\medskip

  \item support and freshness
  \begin{center}
  \smath{\text{supp}(x) \dn \{ a \mid \text{infinite}\,\{ b \mid \swap{a}{b}\act x \not= x\}\}}
  \end{center}\bigskip\pause

  \item $\alpha$-equivalence
  \begin{center}
  \begin{tabular}{l}
  \smath{as.x \approx_\alpha bs.y \dn}\\[2mm]
  \hspace{2cm}\smath{\exists \pi.\;\text{supp}(x) - as = \text{supp}(y) - bs}\\ 
  \hspace{2cm}\smath{\;\wedge\; \text{supp}(x) - as \fresh \pi}\\
  \hspace{2cm}\smath{\;\wedge\; \pi \act x = y}
  \end{tabular}
  \end{center}
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-6>
  \frametitle{New Types in HOL}

   \begin{center}
  \begin{tikzpicture}[scale=1.5]
  %%%\draw[step=2mm] (-4,-1) grid (4,1);
  
  \onslide<2-4,6>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
  \onslide<1-4,6>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
  \onslide<3-5,6>{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
  
  \onslide<3-4,6>{\draw (-2.0, 0.845) --  (0.7,0.845);}
  \onslide<3-4,6>{\draw (-2.0,-0.045)  -- (0.7,-0.045);}

  \onslide<4-4,6>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
  \onslide<4-5,6>{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
  \onslide<1-4,6>{\draw (1.8, 0.48) node[right=-0.1mm]
    {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<4-4,6>{\alert{(sets of raw terms)}}\end{tabular}};}
  \onslide<2-4,6>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
  \onslide<3-5,6>{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
  
  \onslide<3-4,6>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
  \onslide<3-4,6>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}

  \onslide<6>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
  \end{tikzpicture}
  \end{center}
  
  \begin{center}
  \textcolor{red}{\large\bf\onslide<6>{define $\alpha$-equivalence}}
  \end{center}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-3>[c]
  \frametitle{HOL vs.~Nominal}

  \begin{itemize}
  \item Nominal logic / nominal sets by Pitts are incompatible 
  with choice principles\medskip

  \item HOL includes Hilbert's epsilon\pause\bigskip

  \item Solution: Do not require that everything has finite support\medskip

  \begin{center}
  \smath{\onslide<1-2>{\text{finite}(\text{supp}(x))  \quad\Rightarrow\quad} a \fresh a.x}
  \end{center}
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{}

  \begin{tabular}{c@ {\hspace{2mm}}c}
  \\[6mm]
  \begin{tabular}{c}
  \includegraphics[scale=0.11]{harper.jpg}\\[-2mm]
  {\footnotesize Bob Harper}\\[-2.5mm]
  {\footnotesize (CMU)}
  \end{tabular}
  \begin{tabular}{c}
  \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm]
  {\footnotesize Frank Pfenning}\\[-2.5mm]
  {\footnotesize (CMU)}
  \end{tabular} &

  \begin{tabular}{p{6cm}}
  \raggedright
  \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005,
  $\sim$31pp}
  \end{tabular}\\

  \pause
  \\[0mm]
  
  \begin{tabular}{c}
  \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] 
  {\footnotesize Andrew Appel}\\[-2.5mm]
  {\footnotesize (Princeton)}
  \end{tabular} &

  \begin{tabular}{p{6cm}}
  \raggedright
  \color{gray}{relied on their proof in a\\ {\bf security} critical application}
  \end{tabular}
  \end{tabular}\medskip\pause

  \small
  \begin{minipage}{1.0\textwidth}
  (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination
  examined by Henk Barendregt and Andy Pitts.)
  \end{minipage}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}



text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1,2,3,4>[squeeze]
  \frametitle{Formalisation of LF} 
  
  
  \begin{center}
  \begin{tabular}{@ {\hspace{-16mm}}lc}
  \mbox{}\\[-6mm]

  \textcolor{white}{\raisebox{4mm}{1.~Solution}} &
  \begin{tikzpicture}
  [node distance=25mm,
   text height=1.5ex,
   text depth=.25ex,
   node1/.style={
     rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
     draw=black!50, top color=white, bottom color=black!20},
  ]

  \node (proof) [node1] {\large Proof};
  \node (def)   [node1, left of=proof] {\large$\,\;\dn\;\,$};
  \node (alg)  [node1, right of=proof] {\large\hspace{1mm}Alg.\hspace{1mm}\mbox{}};
  
  \draw[->,black!50,line width=2mm] (proof) -- (def);
  \draw[->,black!50,line width=2mm] (proof) -- (alg);

  \onslide<2->{\draw[white,line width=1mm] (0.1,0.6) -- (-0.1,0.25) -- (0.1,-0.25) -- (-0.1,-0.6);} 
  \end{tikzpicture}
  \\[2mm]

  \onslide<3->{%
  \raisebox{4mm}{\textcolor{white}{1st Solution}} &
  \begin{tikzpicture}
  [node distance=25mm,
   text height=1.5ex,
   text depth=.25ex,
   node1/.style={
     rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
     draw=black!50, top color=white, bottom color=black!20},
   node2/.style={
     rectangle, minimum size=12mm, rounded corners=3mm, very thick, 
     draw=red!70, top color=white, bottom color=red!50!black!20}
  ]

  \node (proof) [node1] {\large Proof};
  \node (def)   [node2, left of=proof] {\large$\dn{}\!\!^\text{+ex}$};
  \node (alg)   [node1, right of=proof] {\large\hspace{1mm}Alg.\hspace{1mm}\mbox{}};
  
  \draw[->,black!50,line width=2mm] (proof) -- (def);
  \draw[->,black!50,line width=2mm] (proof) -- (alg);

  \end{tikzpicture}
  \\[2mm]}

  \end{tabular}
  \end{center}

  \begin{textblock}{3}(13.2,5.1)
  \onslide<3->{
  \begin{tikzpicture}
  \node at (0,0) [single arrow, shape border rotate=270, fill=red,text=white]{2h};
  \end{tikzpicture}
  }
  \end{textblock}

  
  \begin{textblock}{11}(1.4,14.3)
  \only<1->{\footnotesize (one needs to check $\sim$31pp~of informal paper proofs from 
            ACM Transactions on Computational Logic, 2005)}
  \end{textblock}

  \only<4->{
  \begin{textblock}{9}(10,11.5)
  \begin{tikzpicture}[remember picture, overlay]
  \draw (0,0) node[fill=cream, text width=5.3cm, thick, draw=red, rounded corners=1mm] (n2)
  {\raggedright I also found \mbox{(fixable)} mistakes in my Ph.D.~thesis. 
  };
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE\begin{tabular}{c}Nominal Isabelle\end{tabular}}
  

  \begin{itemize}
  \item \ldots{}is a tool on top of the theorem prover
  Isabelle; bound variables have names (no de Bruijn 
  indices).\medskip

  \item It can be used to, for example, represent lambda terms

  \begin{center}
  \smath{M ::= x\;\mid\; M\,N \;\mid\; \lambda x.M}
  \end{center}
  \end{itemize}
  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {* 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \small
  \begin{beamercolorbox}[sep=1mm, wd=11cm]{boxcolor}
  {\bf Substitution Lemma:} 
  If \smath{x\not\equiv y} and
  \smath{x\not\in \text{fv}(L)}, then\\
  \mbox{}\hspace{5mm}\smath{M[x:=N][y:=L]\equiv M[y:=L][x:=N[y:=L]]}
  \end{beamercolorbox}

  {\bf Proof:} \alert<4>{By induction on the structure of \smath{M}.}
  \begin{itemize}
  \item {\bf Case 1:} \smath{M} is a variable.

  \begin{tabular}{@ {}l@ {\hspace{1mm}}p{9cm}@ {}}
   Case 1.1. & \smath{M\equiv x}. Then both sides \alert<3,4>{equal} 
               \smath{N[y:=L]} since \smath{x\not\equiv y}.\\[1mm] 
   Case 1.2. & \smath{M\equiv y}. Then both sides \alert<3,4>{equal}
               \smath{L}, for \smath{x\not\in \text{fv}(L)}\\
             & implies \smath{L[x:=\ldots]\equiv L}.\\[1mm]
   Case 1.3. & \smath{M\equiv z\not\equiv x,y}. Then both sides \alert<3,4>{equal} \smath{z}.\\[1mm]
  \end{tabular}

  \item {\bf Case 2:} \smath{M\equiv \lambda z.M_1}. 
  \alert<2>{By the variable convention we may assume that \smath{z\not\equiv x,y} 
  and \smath{z} is not free in \smath{N,L}.}

  \begin{tabular}{@ {}r@ {\hspace{1mm}}l@ {}}
  \smath{(\lambda z.M_1)[x\!:=\!N][y\!:=\!L]} 
  \smath{\equiv} & \smath{\lambda z.(M_1[x\!:=\!N][y\!:=\!L])}\\
  \smath{\equiv} & \smath{\lambda z.(M_1[y\!:=\!L][x\!:=\!N[y\!:=\!L]])}\\
  \smath{\equiv} & \smath{(\lambda z.M_1)[y\!:=\!L][x\!:=\!N[y\!:=\!L]]}.\\
  \end{tabular}
  
  \item {\bf Case 3:} \smath{M\equiv M_1 M_2}. 
  The statement follows again from the induction hypothesis. \hfill$\,\Box\,$
  \end{itemize}

  \begin{textblock}{11}(4,3)
  \begin{block}<5>{}
  Remember only if \smath{y\not=x} and \smath{x\not\in \text{fv}(N)} then\\[2mm]
  \smath{\quad(\lambda y.M)[x:=N]=\lambda y.(M[x:=N])}\\[4mm]
  
          \begin{tabular}{c@ {\hspace{2mm}}l@ {\hspace{2mm}}l@ {}}
            & \smath{(\lambda z.M_1)[x:=N][y:=L]}\\[1.3mm]
            \smath{\equiv} & \smath{(\lambda z.(M_1[x:=N]))[y:=L]} & $\stackrel{1}{\leftarrow}$\\[1.3mm]
            \smath{\equiv} & \smath{\lambda z.(M_1[x:=N][y:=L])} & $\stackrel{2}{\leftarrow}$\\[1.3mm]
            \smath{\equiv} & \smath{\lambda z.(M_1[y:=L][x:=N[y:=L]])} & IH\\[1.3mm] 
            \smath{\equiv} & \smath{(\lambda z.(M_1[y:=L]))[x:=N[y:=L]])} 
                                 & $\stackrel{2}{\rightarrow}$ \alert{\bf\;!}\\[1.3mm] 
            \smath{\equiv} & \smath{(\lambda z.M_1)[y:=L][x:=N[y:=L]]}. & 
                                                             $\stackrel{1}{\rightarrow}$\\[1.3mm]
          \end{tabular}
  \end{block}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{Nominal Isabelle} 

  \begin{itemize}
  \item Define lambda-terms as:
  \end{itemize}
*}
      
 atom_decl name   text_raw {*\medskip\isanewline *}
	nominal_datatype lam =
	    Var "name"
	  | App "lam" "lam" 
	  | Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam _._")


text_raw {*
  \mbox{}\bigskip

  \begin{itemize}
  \item These are \underline{\bf named} alpha-equivalence classes, for example
  \end{itemize}

  \begin{center}
  \gb{@{text "Lam a.(Var a)"}} \alert{$\,=\,$} \gb{@{text "Lam b.(Var b)"}}
  \end{center}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

(*<*)

nominal_primrec
  subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_[_::=_]" [100,100,100] 100)
where
  "(Var x)[y::=s] = (if x=y then s else (Var x))"
| "(App t\<^isub>1 t\<^isub>2)[y::=s] = App (t\<^isub>1[y::=s]) (t\<^isub>2[y::=s])"
| "x\<sharp>(y,s) \<Longrightarrow> (SlidesA.Lam x t)[y::=s] = SlidesA.Lam x (t[y::=s])"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)+
apply(fresh_guess)+
done

(*>*)

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  %%\frametitle{\large Formal Proof of the Substitution Lemma} 

  \small
  \begin{tabular}{@ {\hspace{-4mm}}c @ {}}
  \begin{minipage}{1.1\textwidth}
*}

lemma forget: 
  assumes a: "x \<sharp> L"
  shows "L[x::=P] = L"
using a by (nominal_induct L avoiding: x P rule: lam.strong_induct)
                (auto simp add: abs_fresh fresh_atm)

lemma fresh_fact: 
  fixes z::"name"
  assumes a: "z \<sharp> N" "z \<sharp> L"
  shows "z \<sharp> N[y::=L]"
using a by (nominal_induct N avoiding: z y L rule: lam.strong_induct)
                (auto simp add: abs_fresh fresh_atm)

lemma substitution_lemma:  
  assumes a: "x \<noteq> y" "x \<sharp> L" -- {* \mbox{}\hspace{-2mm}\tikz[remember picture] \node (n1) {}; *}
  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a 
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
     (auto simp add: fresh_fact forget)

text_raw {*
  \end{minipage}
  \end{tabular}

  \begin{textblock}{6}(11,9)
  \only<2>{
  \begin{tikzpicture}[remember picture, overlay]
  \draw (0,0) node[fill=cream, text width=5.5cm, thick, draw=red, rounded corners=1mm] (n2)
  {\setlength\leftmargini{6mm}%
   \begin{itemize}
   \item stands for \smath{x\not\in \text{fv}(L)}\\[-2mm]
   \item reads as ``\smath{x} fresh for \smath{L}'' 
   \end{itemize}
  };
  
  \path[overlay, ->, very thick, red] (n2) edge[out=-90, in=0] (n1);
  \end{tikzpicture}}
  \end{textblock}

  \only<1-3>{}
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\LARGE (Weak) Induction Principles} 

  \begin{itemize}
  \item The usual induction principle for lambda-terms is as follows:

  \begin{center}
  \mbox{}\hspace{-1mm}\begin{beamercolorbox}[sep=1mm, wd=9cm]{boxcolor}
  \centering\smath{%
  \infer{P\,t}
  {\begin{array}{l}
  \forall x.\;P\,x\\[2mm]
  \forall t_1\,t_2.\;P\,t_1\wedge P\,t_2\Rightarrow P\,(t_1\;t_2)\\[2mm]
  \forall x\,t.\;P\,t\Rightarrow P\,(\lambda x.t)\\
  \end{array}
  }}
  \end{beamercolorbox}
  \end{center}

  \item It requires us in the lambda-case to show the property \smath{P} for
  all binders \smath{x}.\smallskip\\ 

  (This nearly always requires renamings and they can be 
  tricky to automate.)
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\LARGE Strong Induction Principles} 

  \begin{itemize}
  \item Therefore we will use the following strong induction principle:

  \begin{center}
  \mbox{}\hspace{-2mm}\begin{beamercolorbox}[sep=1mm, wd=11.5cm]{boxcolor}
  \centering\smath{%
  \infer{\tikz[remember picture] \node[inner sep=1mm] (n1a) {\alert<4>{$P$}};%
         \tikz[remember picture] \node[inner sep=1mm] (n2a) {\alert<3>{$c$}};%
         \tikz[remember picture] \node[inner sep=1mm] (n3a) {\alert<2>{$t$}};}
  {\begin{array}{l}
  \forall x\,c.\;P\,c\;x\\[2mm]
  \forall t_1\,t_2\,c.\;(\forall d.\,P d\,t_1)\wedge (\forall d. P\,d\,t_2)
  \Rightarrow P\,c\;(t_1\,t_2)\\[2mm]
  \forall x\,t\,c.\;\alert<1>{x\fresh \alert<3>{c}} 
  \wedge (\forall d. P\,d\,t)\Rightarrow P\,c\;(\lambda x.t)
  \end{array}
  }}
  \end{beamercolorbox}
  \end{center}
  \end{itemize}

  \begin{textblock}{11}(0.9,10.9)
  \only<2>{
  \begin{tikzpicture}[remember picture]
  \draw (0,0) node[fill=cream, text width=10.5cm, thick, draw=red, rounded corners=1mm] (n3b)
  { The variable over which the induction proceeds:\\[2mm]
    \hspace{3mm}``\ldots By induction over the structure of \smath{M}\ldots''};

  \path[overlay, ->, ultra thick, red] (n3b) edge[out=90, in=-110] (n3a);
  \end{tikzpicture}}

  \only<3>{
  \begin{tikzpicture}[remember picture]
  \draw (0,0) node[fill=cream, text width=11cm, thick, draw=red, rounded corners=1mm] (n2b)
  {The {\bf context} of the induction; i.e.~what the binder should be fresh for
   $\quad\Rightarrow$ \smath{(x,y,N,L)}:\\[2mm]
   ``\ldots By the variable convention we can assume \mbox{\smath{z\not\equiv x,y}} 
     and \smath{z} not free in \smath{N}$\!$,\,\smath{L}\ldots''};

  \path[overlay, ->, ultra thick, red] (n2b) edge[out=90, in=-100] (n2a);
  \end{tikzpicture}}

  \only<4>{
  \begin{tikzpicture}[remember picture]
  \draw (0,0) node[fill=cream, text width=11cm, thick, draw=red, rounded corners=1mm] (n1b)
  {The property to be proved by induction:\\[-3mm]
  \begin{center}\small
  \begin{tabular}{l}
  \smath{\!\!\lambda
  (x,\!y,\!N\!,\!L).\,\lambda M.\;\,x\not=y\,\wedge\,x\fresh L\,\Rightarrow}\\[1mm]
  \hspace{8mm}
  \smath{M[x\!:=\!N][y\!:=\!L] = M[y\!:=\!L][x\!:=\!N[y\!:=\!L]]}  
  \end{tabular}
  \end{center}};

  \path[overlay, ->, ultra thick, red] (n1b) edge[out=90, in=-70] (n1a);
  \end{tikzpicture}}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\LARGE Strong Induction Principles} 

   \begin{center}
  \mbox{}\hspace{-2mm}\begin{beamercolorbox}[sep=1mm, wd=11.5cm]{boxcolor}
  \centering\smath{%
  \infer{P\,\alert{c}\;t}
  {\begin{array}{l}
  \forall x\,c.\;P\,c\;x\\[2mm]
  \forall t_1\,t_2\,c.\;(\forall d.\,P d\,t_1)\wedge (\forall d. P\,d\,t_2)
  \Rightarrow P\,c\;(t_1\,t_2)\\[2mm]
  \forall x\,t\,c.\;x\fresh c \wedge (\forall d. P\,d\,t)\Rightarrow P\,c\;(\lambda x.t)
  \end{array}
  }}
  \end{beamercolorbox}
  \end{center}
 

  \only<1>{
  \begin{textblock}{14}(1.2,9.2)
  \begin{itemize}
  \item There is a condition for when Barendregt's variable convention
    is applicable---it is almost always satisfied, but not always:\\[2mm]
    
    The induction context \smath{c} needs to be finitely supported 
    (is not allowed to mention all names as free).
  \end{itemize}
  \end{textblock}}

  \only<2>{
  \begin{itemize}
  \item In the case of the substitution lemma:\\[2mm]

  \begin{textblock}{16.5}(0.7,11.5)
  \small
*}

(*<*)
lemma 
  assumes a: "x\<noteq>y" "x \<sharp> L"
  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a
(*>*)
proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
txt_raw {* \isanewline$\ldots$ *}
(*<*)oops(*>*)

text_raw {*
  \end{textblock}
  \end{itemize}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\Large \mbox{Same Problem with Rule Inductions}} 

  \begin{itemize}
  \item We can specify typing-rules for lambda-terms as:

  \begin{center}
  \begin{tabular}{@ {\hspace{-6mm}}c@ {}}
  \colorbox{cream}{
  \smath{\infer{\Gamma\vdash x:\tau}{(x\!:\!\tau)\in\Gamma\;\;\text{valid}\;\Gamma}}}
  \;\;
  \colorbox{cream}{
  \smath{\infer{\Gamma\vdash t_1\;t_2:\tau}
        {\Gamma\vdash t_1:\sigma\!\rightarrow\!\tau & \Gamma\vdash t_2:\sigma}}}\\[4mm]

  \colorbox{cream}{
  \smath{\infer{\Gamma\vdash \lambda x.t:\sigma\!\rightarrow\!\tau}
        {x\fresh \Gamma & (x\!:\!\sigma)\!::\!\Gamma\vdash t:\tau}}}\\[6mm]

  \colorbox{cream}{
  \smath{\infer{\text{valid}\;[]}{}}}
  \;\;\;\;
  \colorbox{cream}{
  \smath{\infer{\text{valid}\;(x\!:\!\tau)\!::\!\Gamma}{x\fresh\Gamma & \text{valid}\;\Gamma}}}\\[8mm]
  \end{tabular}
  \end{center}

  \item If \smath{\Gamma_1\vdash t:\tau} and \smath{\text{valid}\;\Gamma_2},
  \smath{\Gamma_1\subseteq \Gamma_2} then \smath{\Gamma_2\vdash t:\tau}.$\!\!\!\!\!$

  \end{itemize}

  
  \begin{textblock}{11}(1.3,4)
  \only<2>{
  \begin{tikzpicture}
  \draw (0,0) node[fill=cream, text width=10.5cm, thick, draw=red, rounded corners=1mm] (nn)
  {The proof of the weakening lemma is said to be trivial / obvious / routine 
   /\ldots{} in many places.\\[2mm] 
          
  (I am actually still looking for a place in the literature where a
  trivial / obvious / routine /\ldots{} proof is spelled out --- I know of
  proofs by Gallier, McKinna \& Pollack and Pitts, but I would not
  call them trivial / obvious / routine /\ldots)};
  \end{tikzpicture}}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{Recall: Rule Inductions} 

  \begin{center}\large
  \colorbox{cream}{
  \smath{\infer[\text{rule}]{\text{concl}}{\text{prem}_1 \ldots \text{prem}_n\;\text{scs}}}}
  \end{center}\bigskip

  \begin{tabular}[t]{l}
  Rule Inductions:\\[1mm]
  \begin{tabular}{l@ {\hspace{2mm}}p{8.4cm}}
  1.) & Assume the property for the premises. Assume the side-conditions.\\[1mm]
  2.) & Show the property for the conclusion.\\
  \end{tabular}
  \end{tabular}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\LARGE\mbox{Induction Principle for Typing}} 

  \begin{itemize}
  \item The induction principle that comes with the typing definition is as follows:\\[-13mm]
  \mbox{}
  \end{itemize}

  \begin{center}
  \begin{tabular}{@ {\hspace{-5mm}}c@ {}}
  \colorbox{cream}{
  \smath{
  \infer{\Gamma\vdash t:\tau \Rightarrow P\,\Gamma\,t\,\tau}
  {\begin{array}{l}
      \forall \Gamma\,x\,\tau.\,\;(x\!:\!\tau)\in\Gamma\wedge
         \text{valid}\,\Gamma\Rightarrow P\,\Gamma\,(x)\,\tau\\[4mm]
      \forall \Gamma\,t_1\,t_2\,\sigma\,\tau.\\
      P\,\Gamma\,t_1\,(\sigma\!\rightarrow\!\tau)\wedge
      P\,\Gamma\,t_2\,\sigma
      \Rightarrow P\,\Gamma\,(t_1\,t_2)\,\tau\\[4mm]
      \forall \Gamma\,x\,t\,\sigma\,\tau.\\
      x\fresh\Gamma\wedge
      P\,((x\!:\!\sigma)\!::\!\Gamma)\,t\,\tau
      \Rightarrow P\,\Gamma (\lambda x.t)\,(\sigma\!\rightarrow\!\tau)\\[2mm]
   \end{array}
  }
  }}
  \end{tabular}
  \end{center}

  \begin{textblock}{4}(9,13.8)
  \begin{tikzpicture}
  \draw (0,0) node[fill=cream, text width=3.9cm, thick, draw=red, rounded corners=1mm] (nn)
  {\small Note the quantifiers!};
  \end{tikzpicture}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\LARGE \mbox{Proof of Weakening Lemma}} 
  \mbox{}\\[-18mm]\mbox{}

  \begin{center}
  \colorbox{cream}{
  \smath{\infer{\Gamma\vdash \lambda x.t:\sigma\!\rightarrow\!\tau}
        {x\fresh \Gamma & (x\!:\!\sigma)\!::\!\Gamma\vdash t:\tau}}}
  \end{center}

  \begin{minipage}{1.1\textwidth}
  \begin{itemize}
  \item If \smath{\Gamma_1\!\vdash\! t\!:\!\tau} then 
  \smath{\alert<1>{\forall \Gamma_2}.\,\text{valid}\,\Gamma_2 \wedge \Gamma_1\!\subseteq\!
  \Gamma_2\!\Rightarrow\! \Gamma_2\!\vdash\! t\!:\!\tau}
  \end{itemize}

  \pause

  \mbox{}\hspace{-5mm}
  \underline{For all \smath{\Gamma_1}, \smath{x}, \smath{t}, \smath{\sigma} and \smath{\tau}}:
  
  \begin{itemize}
  \item We know:\\
  \smath{\forall \alert<4->{\Gamma_2}.\,\text{valid}\,\alert<4->{\Gamma_2} \wedge 
    (x\!:\!\sigma)\!::\!\Gamma_1\!\subseteq\! \alert<4->{\Gamma_2} \Rightarrow \!\!
    \tikz[remember picture, baseline=(ea.base)] 
         \node (ea) {\smath{\alert<4->{\Gamma_2}}};\!\vdash\! t\!:\!\tau}\\
  \smath{x\fresh\Gamma_1}\\
  \onslide<3->{\smath{\text{valid}\,\Gamma_2 \wedge \Gamma_1\!\subseteq\!\Gamma_2
                      \only<6->{\Rightarrow (x\!:\!\sigma)\!::\!\Gamma_1\!\subseteq\!
                                            (x\!:\!\sigma)\!::\!\Gamma_2}}}\\
  \onslide<3->{\smath{\textcolor{white}{\text{valid}\,\Gamma_2 \wedge \Gamma_1\!\subseteq\!\Gamma_2
          \Rightarrow} \only<7->{\;\alert{\text{valid}\,(x\!:\!\sigma)\!::\!\Gamma_2\;\;\text{\bf ???}}}}}

  \item We have to show:\\
  \only<2>{
  \smath{\forall \Gamma_2.\,\text{valid}\,\Gamma_2 \wedge 
  \Gamma_1\!\subseteq\!\Gamma_2 \Rightarrow \Gamma_2\!\vdash\! 
  \lambda x.t\!:\!\sigma\!\rightarrow\!\tau}}
  \only<3->{
  \smath{\Gamma_2\!\vdash\!\lambda x.t\!:\!\sigma\!\rightarrow\!\tau}}

  \end{itemize}
  \end{minipage}

  \begin{textblock}{4}(10,6.5)
  \only<5->{
  \begin{tikzpicture}[remember picture]
  \draw (0,0) node[fill=cream, text width=4cm, thick, draw=red, rounded corners=1mm] (eb)
  {\smath{\Gamma_2\mapsto (x\!:\!\sigma)\!::\!\Gamma_2}};
  
  \path[overlay, ->, ultra thick, red] (eb) edge[out=-90, in=80] (ea);
  \end{tikzpicture}}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}

  \begin{textblock}{14.8}(0.7,0.5)
  \begin{itemize}
  \item The usual proof of strong normalisation for simply- typed lambda-terms 
  establishes first:\\[1mm]

  \colorbox{cream}{%
  \begin{tabular}{@ {}p{11cm}}
  Lemma: If for all reducible \smath{s}, \smath{t[x\!:=\!s]} is reducible, then
  \smath{\lambda x.t} is reducible.
  \end{tabular}}\smallskip

  \item Then one shows for a closing (simultaneous) substitution:\\[2mm]

  \colorbox{cream}{%
  \begin{tabular}{@ {}p{11cm}}
  Theorem: If \smath{\Gamma\vdash t:\tau}, then for all closing
  substitutions \smath{\theta} containing reducible terms only, 
  \smath{\theta(t)} is reducible.
  \end{tabular}}

  \mbox{}\\[1mm]

  Lambda-Case: By ind.~we know \smath{(x\!\mapsto\! s\cup\theta)(t)}
  is reducible with \smath{s} being reducible. This is equal\alert{$^*$} to
  \smath{(\theta(t))[x\!:=\!s]}. Therefore, we can apply the lemma and get \smath{\lambda
  x.(\theta(t))} is reducible. Because this is equal\alert{$^*$} to
  \smath{\theta(\lambda x.t)}, we are done.
  \hfill\footnotesize\alert{$^*$}you have to take a deep breath
  \end{itemize}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\LARGE \mbox{Proof of Weakening Lemma}} 
  \mbox{}\\[-18mm]\mbox{}

  \begin{center}
  \colorbox{cream}{
  \smath{\infer{\Gamma\vdash \lambda x.t:\sigma\!\rightarrow\!\tau}
        {x\fresh \Gamma & (x\!:\!\sigma)\!::\!\Gamma\vdash t:\tau}}}
  \end{center}

  \begin{minipage}{1.1\textwidth}
  \begin{itemize}
  \item If \smath{\Gamma_1\!\vdash\! t\!:\!\tau} then 
  \smath{\text{valid}\,\Gamma_2 \wedge \Gamma_1\!\subseteq\!
  \Gamma_2\!\Rightarrow\! \Gamma_2\!\vdash\! t\!:\!\tau}
  \end{itemize}

  \mbox{}\hspace{-5mm}
  \underline{For all \smath{\Gamma_1}, \smath{x}, \smath{t}, \smath{\sigma} and \smath{\tau}}:
  
  \begin{itemize}
  \item We know:\\
  \smath{\forall \Gamma_2.\,\text{valid}\,\Gamma_2 \wedge 
    (x\!:\!\sigma)\!::\!\Gamma_1\!\subseteq\! \Gamma_2 \Rightarrow \!\!
    \Gamma_2\!\vdash\! t\!:\!\tau}\\
  \smath{x\fresh\Gamma_1}\\
  \begin{tabular}{@ {}ll@ {}}
  \smath{\text{valid}\,\Gamma_2 \wedge \Gamma_1\!\subseteq\!\Gamma_2} &
  \only<2->{\smath{\alert{\Rightarrow (x\!:\!\sigma)\!::\!\Gamma_1\!\subseteq\! 
                           (x\!:\!\sigma)\!::\!\Gamma_2}}}\\
  \smath{\alert{x\fresh\Gamma_2}} & 
  \only<2->{\smath{\alert{\Rightarrow \text{valid}\,(x\!:\!\sigma)\!::\!\Gamma_2}}}
  \end{tabular}

  \item We have to show:\\
  \smath{\Gamma_2\!\vdash\!\lambda x.t\!:\!\sigma\!\rightarrow\!\tau}

  \end{itemize}
  \end{minipage}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}



text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{SN (Again)} 
  \mbox{}\\[-8mm]

  \colorbox{cream}{%
  \begin{tabular}{@ {}p{10.5cm}}
  Theorem: If \smath{\Gamma\vdash t:\tau}, then for all closing
  substitutions \smath{\theta} containing reducible terms only, 
  \smath{\theta(t)} is reducible.
  \end{tabular}}\medskip

  \begin{itemize}
  \item
  Since we say that the strong induction should avoid \smath{\theta}, we
  get the assumption \alert{$x\fresh\theta$} then:\\[2mm]
  
  \begin{tabular}{@ {}p{10.5cm}}\raggedright
  Lambda-Case: By ind.~we know \smath{(x\!\mapsto\! s\cup\theta)(t)} is reducible 
  with
  \smath{s} being reducible. This is {\bf equal} to
  \smath{(\theta(t))[x\!:=\!s]}. Therefore, we can apply the lemma and get
  \smath{\lambda x.(\theta(t))} is reducible. Because this is {\bf equal} to
  \smath{\theta(\lambda x.t)}, we are done.
  \end{tabular}\smallskip

  \begin{center}
  \begin{tabular}{rl}
  \smath{x\fresh\theta\Rightarrow} & 
  \smath{(x\!\mapsto\! s\cup\theta)(t) \;\alert{=}\;(\theta(t))[x\!:=\!s]}\\[1mm]
  &
  \smath{\theta(\lambda x.t) \;\alert{=}\; \lambda x.(\theta(t))}
  \end{tabular}
  \end{center}
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{So Far So Good}

  \begin{itemize}
  \item A Faulty Lemma with the Variable Convention?\\[-8mm]\mbox{}
  \end{itemize}

  \begin{center}
  \begin{block}{}
  \color{gray}
  \small%
  {\bf\mbox{}\hspace{-1.5mm}Variable Convention:}\\[1mm] 
  If $M_1,\ldots,M_n$ occur in a certain mathematical context
  (e.g. definition, proof), then in these terms all bound variables 
  are chosen to be different from the free variables.\\[2mm]
  
  \footnotesize\hfill Barendregt in ``The Lambda-Calculus: Its Syntax and Semantics''
  \end{block}
  \end{center}

  \mbox{}\\[-18mm]\mbox{}

  \begin{columns}
  \begin{column}[t]{4.7cm}
  Inductive Definitions:\\
  \begin{center}
  \smath{\infer{\text{concl}}{\text{prem}_1 \ldots \text{prem}_n\;\text{scs}}}
  \end{center}
  \end{column}
  \begin{column}[t]{7cm}
  Rule Inductions:\\[2mm]
  \begin{tabular}{l@ {\hspace{2mm}}p{5.5cm}}
  1.) & Assume the property for\\ & the premises. Assume \\ & the side-conditions.\\[1mm]
  2.) & Show the property for\\ & the conclusion.\\
  \end{tabular}
  \end{column}
  \end{columns}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \setbeamerfont{itemize/enumerate subbody}{size=\normalsize}
  \begin{frame}[sqeeze]
  \frametitle{Faulty Reasoning} 

  %\mbox{}

  \begin{itemize}
  \item Consider the two-place relation \smath{\text{foo}}:\medskip
  \begin{center}
  \begin{tabular}{ccc}
  \raisebox{2.5mm}{\colorbox{cream}{%
  \smath{\;\infer{x\mapsto x}{}}}}\hspace{2mm}
  &
  \raisebox{2mm}{\colorbox{cream}{%
  \smath{\infer{t_1\;t_2\mapsto t_1\;t_2}{}}}}\hspace{2mm}
  &
  \colorbox{cream}{%
  \smath{\infer{\lambda x.t\mapsto t'}{t\mapsto t'}}}\\[5mm]
  \end{tabular}
  \end{center}

  \pause

  \item The lemma we going to prove:\smallskip
  \begin{center}
  Let \smath{t\mapsto t'}. If \smath{y\fresh t} then \smath{y\fresh t'}.
  \end{center}\bigskip

  \only<3>{
  \item Cases 1 and 2 are trivial:\medskip
  \begin{itemize}
  \item If \smath{y\fresh x} then \smath{y\fresh x}.
  \item If \smath{y\fresh t_1\,t_2} then \smath{y\fresh t_1\,t_2}.
  \end{itemize}
  }

  \only<4->{
  \item Case 3:
  \begin{itemize}
  \item We know \tikz[remember picture,baseline=(ta.base)] \node (ta) {\smath{y\fresh \lambda x.t}.}; 
  We have to show \smath{y\fresh t'}.$\!\!\!\!$ 
  \item The IH says: if \smath{y\fresh t} then \smath{y\fresh t'}.
  \item<7,8> So we have \smath{y\fresh t}. Hence \smath{y\fresh t'} by IH. Done!
  \end{itemize}
  }
  \end{itemize}
  
  \begin{textblock}{11.3}(0.7,0.6)
  \only<5-7>{
  \begin{tikzpicture}
  \draw (0,0) node[fill=cream, text width=11.2cm, thick, draw=red, rounded corners=1mm] (nn)
  {{\bf Variable Convention:}\\[2mm] 
  \small
   If $M_1,\ldots,M_n$ occur in a certain mathematical context
   (e.g. definition, proof), then in these terms all bound variables 
   are chosen to be different from the free variables.\smallskip

  \normalsize
   {\bf In our case:}\\[2mm]
   The free variables are \smath{y} and \smath{t'}; the bound one is 
   \smath{x}.\medskip
          
   By the variable convention we conclude that \smath{x\not= y}.
  };
  \end{tikzpicture}}
  \end{textblock}

  \begin{textblock}{9.2}(3.6,9)
  \only<6,7>{
  \begin{tikzpicture}[remember picture]
  \draw (0,0) node[fill=cream, text width=9cm, thick, draw=red, rounded corners=1mm] (tb)
  {\small\smath{y\!\not\in\! \text{fv}(\lambda x.t) \Longleftrightarrow
          y\!\not\in\! \text{fv}(t)\!-\!\{x\}
          \stackrel{x\not=y}{\Longleftrightarrow}
          y\!\not\in\! \text{fv}(t)}};

  \path[overlay, ->, ultra thick, red] (tb) edge[out=-120, in=75] (ta);
  \end{tikzpicture}}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \setbeamerfont{itemize/enumerate subbody}{size=\normalsize}
  \begin{frame}
  \frametitle{VC-Compatibility} 

  \begin{itemize}
  \item We introduced two conditions that make the VC safe to use in rule inductions:
  
  \begin{itemize}
  \item the relation needs to be \alert{\bf equivariant}, and
  \item the binder is not allowed to occur in the \alert{\bf support} of 
  the conclusion (not free in the conclusion)\bigskip
  \end{itemize}
  
  \item Once a relation satisfies these two conditions, then Nominal
  Isabelle derives the strong induction principle automatically.
  \end{itemize}

  \begin{textblock}{11.3}(0.7,6)
  \only<2>{
  \begin{tikzpicture}
  \draw (0,0) node[fill=cream, text width=11cm, thick, draw=red, rounded corners=1mm] (nn)
  {A relation \smath{R} is {\bf equivariant} iff
  %
  \begin{center}
  \smath{%
  \begin{array}[t]{l}
  \forall \pi\,t_1\ldots t_n\\[1mm]
  \;\;\;\;R\,t_1\ldots t_n \Rightarrow R (\pi\act t_1)\ldots(\pi\act t_n)
  \end{array}}
  \end{center}
  %
  This means the relation has to be invariant under permutative renaming of
  variables.\smallskip
      
  \small
  (This property can be checked automatically if the inductive definition is composed of
  equivariant ``things''.)
  };
  \end{tikzpicture}}
  \end{textblock}

  \only<3>{}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\mbox{Honest Toil, No Theft!}} 

  \begin{itemize}
  \item The \underline{sacred} principle of HOL:

  \begin{block}{}
  ``The method of `postulating' what we want has many advantages; they are
  the same as the advantages of theft over honest toil.''\\[2mm] 
  \hfill{}\footnotesize B.~Russell, Introduction of Mathematical Philosophy
  \end{block}\bigskip\medskip

  \item I will show next that the \underline{weak} structural induction 
  principle implies the \underline{strong} structural induction principle.\\[3mm] 
  
  \textcolor{gray}{(I am only going to show the lambda-case.)}
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{Permutations} 

  A permutation \alert{\bf acts} on variable names as follows:

  \begin{center}
  \begin{tabular}{rcl}
    $\smath{{[]}\act a}$ & $\smath{\dn}$ & $\smath{a}$\\
    $\smath{(\swap{a_1}{a_2}\!::\!\pi)\act a}$ & $\smath{\dn}$ &
    $\smath{\begin{cases}
      a_1 &\text{if $\pi\act a = a_2$}\\
      a_2 &\text{if $\pi\act a = a_1$}\\
      \pi\act a &\text{otherwise}
    \end{cases}}$
   \end{tabular}
  \end{center}

  \begin{itemize}
  \item $\smath{[]}$ stands for the empty list (the identity permutation), and\smallskip  
  \item $\smath{\swap{a_1}{a_2}\!::\!\pi}$ stands for the permutation $\smath{\pi}$ 
  followed by the swapping $\smath{\swap{a_1}{a_2}}$.
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\Large\mbox{Permutations on Lambda-Terms}} 

  \begin{itemize}
  \item Permutations act on lambda-terms as follows:

  \begin{center}
  \begin{tabular}{rcl}
  $\smath{\pi\act\,x}$ & $\smath{\dn}$ & ``action on variables''\\
  $\smath{\pi\act\, (t_1~t_2)}$ & $\smath{\dn}$ & $\smath{(\pi\act t_1)~(\pi\act t_2)}$\\
  $\smath{\pi\act(\lambda x.t)}$ & $\smath{\dn}$ & $\smath{\lambda (\pi\act x).(\pi\act t)}$\\
  \end{tabular}
  \end{center}\medskip

  \item Alpha-equivalence can be defined as:

  \begin{center}
  \begin{tabular}{c}
  \colorbox{cream}{\smath{\infer{\lambda x.t_1 = \lambda x.t_2}{t_1=t_2}}}\\[3mm]
  \colorbox{cream}{\smath{\infer{\lambda x.t_1 
                                 \tikz[baseline=-3pt,remember picture] \node (e1) {\alert<2>{$=$}}; 
                                 \lambda y.t_2}
                  {x\not=y & t_1 = \swap{x}{y}\act t_2 & x\fresh t_2}}}
  \end{tabular}
  \end{center}

  \end{itemize}


  \begin{textblock}{4}(8.3,14.2)
  \only<2>{
  \begin{tikzpicture}[remember picture]
  \draw (0,0) node[fill=cream, text width=5.5cm, thick, draw=red, rounded corners=1mm] (e2)
  {\small Notice, I wrote equality here!};

  \path[overlay, ->, ultra thick, red] (e2) edge[out=180, in=-90] (e1);
  \end{tikzpicture}}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{My Claim} 

  \begin{center}
  \colorbox{cream}{%
  \smath{%
  \infer{P\;t}
  {\begin{array}{l}
  \forall x.\;P\;x\\[2mm]
  \forall t_1\,t_2.\;P\;t_1\wedge P\;t_2\Rightarrow P\;(t_1\;t_2)\\[2mm]
  \forall x\,t.\;P\;t\Rightarrow P\;(\lambda x.t)\\
  \end{array}
  }}}\medskip

  \begin{tikzpicture}
  \node at (0,0) [single arrow, single arrow tip angle=140, 
                  shape border rotate=270, fill=red,text=white]{implies};
  \end{tikzpicture}\medskip

  \colorbox{cream}{%
  \smath{%
  \infer{P c\,t}%
  {\begin{array}{@ {}l@ {}}
  \forall x\,c.\;P c\,x\\[2mm]
  \forall t_1\,t_2\,c.\;(\forall d.\,P d\,t_1)\wedge (\forall d.\,P d\,t_2)
  \Rightarrow P c\,(t_1\,t_2)\\[2mm]
  \forall x\,t\,c.\;
  x\fresh c \wedge (\forall d.\,P d\,t)\Rightarrow P c\,(\lambda x.t)
  \end{array}}}}
  
  \end{center}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\large\mbox{Proof for the Strong Induction Principle}} 

  \begin{textblock}{14}(1.2,1.7)
  \begin{itemize}
  \item<1-> We prove \alt<1>{\smath{P c\,t}}{\smath{\forall \pi\,c.\;P c\,(\pi\act t)}} 
  by induction on \smath{t}.
  
  \item<3-> I.e., we have to show \alt<3>{\smath{P c\,(\pi\act(\lambda x.t))}}
  {\smath{P c\,\lambda(\pi\act x).(\pi\act t)}}.
 
  \item<5-> We have \smath{\forall \pi\,c.\;P c\,(\pi\act t)} by induction.
  
  
  \item<6-> Our weaker precondition says that:\\
  \begin{center}
  \smath{\forall x\,t\,c.\,x\fresh c \wedge (\forall c.\,P c\,t) \Rightarrow P c\,(\lambda x.t)}  
  \end{center}
  
  \item<7-> We choose a fresh \smath{y} such that \smath{y\fresh (\pi\act x,\pi\act t,c)}.
  
  \item<8-> Now we can use 
  \alt<8>{\smath{\forall c.\;P c\,((\swap{y}{\,\pi\act x}\!::\!\pi)\act t)}}
         {\smath{\forall c.\;P c\,(\swap{y}{\,\pi\act x}\act\pi\act t)}} \only<10->{to infer}

  \only<10->{
  \begin{center}
  \smath{P\,c\,\lambda y.(\swap{y}{\,\pi\act x}\act\pi\act t)}  
  \end{center}}
 
  \item<11-> However 
  \begin{center}
  \smath{\lambda y.(\swap{y}{\,\pi\act x}\act\pi\act t)
         \textcolor{red}{\;=\;}\lambda (\pi\act x).(\pi\act t)}
  \end{center}

  \item<12> Therefore \smath{P\,c\,\lambda (\pi\act x).(\pi\act t)} and we are done.
  \end{itemize}
  \end{textblock}

  \only<11->{
  \begin{textblock}{9}(7,6)
  \begin{tikzpicture}[remember picture, overlay]
  \draw (0,0) node[fill=cream, text width=7cm, thick, draw=red, rounded corners=1mm] (n2)
  {\centering
  \smath{\infer{\lambda y.t_1=\lambda x.t_2}{x\not=y & t_1=\swap{x}{y}\act t_2 &
              y\fresh t_2}}
  };
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<3->[squeeze]
  \frametitle{Formalisation of LF} 
  
  
  \begin{center}
  \begin{tabular}{@ {\hspace{-16mm}}lc}
  \mbox{}\\[-6mm]

  \textcolor{white}{\raisebox{4mm}{1.~Solution}} &
  \begin{tikzpicture}
  [node distance=25mm,
   text height=1.5ex,
   text depth=.25ex,
   node1/.style={
     rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
     draw=black!50, top color=white, bottom color=black!20},
  ]

  \node (proof) [node1] {\large Proof};
  \node (def)   [node1, left of=proof] {\large$\,\;\dn\;\,$};
  \node (alg)  [node1, right of=proof] {\large\hspace{1mm}Alg.\hspace{1mm}\mbox{}};
  
  \draw[->,black!50,line width=2mm] (proof) -- (def);
  \draw[->,black!50,line width=2mm] (proof) -- (alg);

  \onslide<2->{\draw[white,line width=1mm] (0.1,0.6) -- (-0.1,0.25) -- (0.1,-0.25) -- (-0.1,-0.6);} 
  \end{tikzpicture}
  \\[2mm]

  \onslide<3->{%
  \raisebox{4mm}{1st Solution} &
  \begin{tikzpicture}
  [node distance=25mm,
   text height=1.5ex,
   text depth=.25ex,
   node1/.style={
     rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
     draw=black!50, top color=white, bottom color=black!20},
   node2/.style={
     rectangle, minimum size=12mm, rounded corners=3mm, very thick, 
     draw=red!70, top color=white, bottom color=red!50!black!20}
  ]

  \node (proof) [node1] {\large Proof};
  \node (def)   [node2, left of=proof] {\large$\dn{}\!\!^\text{+ex}$};
  \node (alg)   [node1, right of=proof] {\large\hspace{1mm}Alg.\hspace{1mm}\mbox{}};
  
  \draw[->,black!50,line width=2mm] (proof) -- (def);
  \draw[->,black!50,line width=2mm] (proof) -- (alg);

  \end{tikzpicture}
  \\[2mm]}

  \onslide<4->{%
  \raisebox{4mm}{\hspace{-1mm}2nd Solution} & 
  \begin{tikzpicture}
  [node distance=25mm,
   text height=1.5ex,
   text depth=.25ex,
   node1/.style={
     rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
     draw=black!50, top color=white, bottom color=black!20},
   node2/.style={
     rectangle, minimum size=12mm, rounded corners=3mm, very thick, 
     draw=red!70, top color=white, bottom color=red!50!black!20}
  ]

  \node (proof) [node1] {\large Proof};
  \node (def)   [node1, left of=proof] {\large$\,\;\dn\;\,$};
  \node (alg)   [node2, right of=proof] {\large Alg.$\!^\text{-ex}$};
  
  \draw[->,black!50,line width=2mm] (proof) -- (def);
  \draw[->,black!50,line width=2mm] (proof) -- (alg);

  \end{tikzpicture}
  \\[2mm]}

  \onslide<5->{%
  \raisebox{4mm}{\hspace{-1mm}3rd Solution} & 
  \begin{tikzpicture}
  [node distance=25mm,
   text height=1.5ex,
   text depth=.25ex,
   node1/.style={
     rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
     draw=black!50, top color=white, bottom color=black!20},
   node2/.style={
     rectangle, minimum size=12mm, rounded corners=3mm, very thick, 
     draw=red!70, top color=white, bottom color=red!50!black!20}
  ]

  \node (proof) [node2] {\large Proof};
  \node (def)   [node1, left of=proof] {\large$\,\;\dn\;\,$};
  \node (alg)   [node1, right of=proof] {\large\hspace{1mm}Alg.\hspace{1mm}\mbox{}};
  
  \draw[->,black!50,line width=2mm] (proof) -- (def);
  \draw[->,black!50,line width=2mm] (proof) -- (alg);

  \end{tikzpicture}
  \\}

  \end{tabular}
  \end{center}

  \begin{textblock}{3}(13.2,5.1)
  \onslide<3->{
  \begin{tikzpicture}
  \node at (0,0) [single arrow, shape border rotate=270, fill=red,text=white]{2h};
  \end{tikzpicture}
  }
  \end{textblock}

  
  \begin{textblock}{13}(1.4,15)
  \only<3->{\footnotesize (each time one needs to check $\sim$31pp~of informal paper proofs)}
  \end{textblock}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{Conclusions} 

  \begin{itemize}
  \item The Nominal Isabelle automatically derives the strong structural
  induction principle for \underline{\bf all} nominal datatypes (not just the 
  lambda-calculus);

  \item also for rule inductions (though they have to satisfy the vc-condition).

  \item They are easy to use: you just have to think carefully what the variable
  convention should be.

  \item We can explore the \colorbox{black}{\textcolor{white}{dark}} corners 
  of the variable convention: when and where it can be used safely.
  
  \item<2> \alert{\bf Main Point:} Actually these proofs using the
  variable convention are all trivial / obvious / routine\ldots {\bf provided} 
  you use Nominal Isabelle. ;o)
 
  \end{itemize}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{\begin{tabular}{c}Nominal Meets\\[-2mm] Automata Theory\end{tabular}} 

  \begin{itemize}
  \item<1-> So what?\bigskip\medskip
 
  \item<2-> I can give you a good argument why regular expressions
  are much, much better than automata. \textcolor{darkgray}{(over dinner?)}\medskip

  \item<3-> Nominal automata?\bigskip\bigskip\medskip
  \end{itemize}


  \onslide<2->{
  \footnotesize\textcolor{darkgray}{A Formalisation of the Myhill-Nerode Theorem based on
  Regular Expressions (by Wu, Zhang and Urban)}
  }

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}



text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{Quiz}
  %%%\small
  \mbox{}\\[-9mm]

  Imagine\ldots\\[2mm]

  \begin{tabular}{@ {\hspace{1cm}}l}
  \textcolor{blue}{Var\;``name''} \\
  \textcolor{blue}{App\;``lam''\;''lam''}\\
  \textcolor{blue}{Lam\;``\flqq{}name\frqq{}lam''} \\
  \textcolor{red}{Foo\;``\flqq{}name\frqq{}\flqq{}name\frqq{}lam''\;``
                  \flqq{}name\frqq{}\flqq{}name\frqq{}lam''}\\[2mm]
  \end{tabular}

  That means roughly:\\[2mm]
 
  \begin{tabular}{@ {\hspace{1cm}}l}
  \alert{Foo\;($\lambda x.y.t_1$)\;($\lambda z.u.t_2$)}
  \end{tabular}

  \begin{itemize}
  \item What does the variable convention look like for \alert{Foo}?
  \item What does the clause for capture-avoiding substitution look like?
  \end{itemize}

  \footnotesize
  Answers: Download Nominal Isabelle and try it out\\
  \textcolor{white}{Answers:} http://isabelle.in.tum.de/nominal\\
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>[b]
  \frametitle{
  \begin{tabular}{c}
  \mbox{}\\[13mm]
  \alert{\LARGE Thank you very much!}\\
  \alert{\Large Questions?}
  \end{tabular}}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

(*<*)
end
(*>*)