"isabelle make" compiles all examples with newparser/newfv/newalpha only.
(* Title: Nominal2_Supp
Authors: Brian Huffman, Christian Urban
Supplementary Lemmas and Definitions for
Nominal Isabelle.
*)
theory Nominal2_Supp
imports Nominal2_Base Nominal2_Eqvt Nominal2_Atoms
begin
section {* Fresh-Star *}
text {* The fresh-star generalisation of fresh is used in strong
induction principles. *}
definition
fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80)
where
"as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x"
lemma fresh_star_prod:
fixes as::"atom set"
shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)"
by (auto simp add: fresh_star_def fresh_Pair)
lemma fresh_star_union:
shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)"
by (auto simp add: fresh_star_def)
lemma fresh_star_insert:
shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)"
by (auto simp add: fresh_star_def)
lemma fresh_star_Un_elim:
"((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)"
unfolding fresh_star_def
apply(rule)
apply(erule meta_mp)
apply(auto)
done
lemma fresh_star_insert_elim:
"(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)"
unfolding fresh_star_def
by rule (simp_all add: fresh_star_def)
lemma fresh_star_empty_elim:
"({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C"
by (simp add: fresh_star_def)
lemma fresh_star_unit_elim:
shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C"
by (simp add: fresh_star_def fresh_unit)
lemma fresh_star_prod_elim:
shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
by (rule, simp_all add: fresh_star_prod)
lemma fresh_star_plus:
fixes p q::perm
shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
unfolding fresh_star_def
by (simp add: fresh_plus_perm)
lemma fresh_star_permute_iff:
shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
unfolding fresh_star_def
by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)
lemma fresh_star_eqvt[eqvt]:
shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)"
unfolding fresh_star_def
unfolding Ball_def
apply(simp add: all_eqvt)
apply(subst permute_fun_def)
apply(simp add: imp_eqvt fresh_eqvt mem_eqvt)
done
section {* Avoiding of atom sets *}
text {*
For every set of atoms, there is another set of atoms
avoiding a finitely supported c and there is a permutation
which 'translates' between both sets.
*}
lemma at_set_avoiding_aux:
fixes Xs::"atom set"
and As::"atom set"
assumes b: "Xs \<subseteq> As"
and c: "finite As"
shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
proof -
from b c have "finite Xs" by (rule finite_subset)
then show ?thesis using b
proof (induct rule: finite_subset_induct)
case empty
have "0 \<bullet> {} \<inter> As = {}" by simp
moreover
have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm)
ultimately show ?case by blast
next
case (insert x Xs)
then obtain p where
p1: "(p \<bullet> Xs) \<inter> As = {}" and
p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast
from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast
with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast
hence px: "p \<bullet> x = x" unfolding supp_perm by simp
have "finite (As \<union> p \<bullet> Xs)"
using `finite As` `finite Xs`
by (simp add: permute_set_eq_image)
then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x"
by (rule obtain_atom)
hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x"
by simp_all
let ?q = "(x \<rightleftharpoons> y) + p"
have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)"
unfolding insert_eqvt
using `p \<bullet> x = x` `sort_of y = sort_of x`
using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs`
by (simp add: swap_atom swap_set_not_in)
have "?q \<bullet> insert x Xs \<inter> As = {}"
using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}`
unfolding q by simp
moreover
have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs"
using p2 unfolding q
by (intro subset_trans [OF supp_plus_perm])
(auto simp add: supp_swap)
ultimately show ?case by blast
qed
qed
lemma at_set_avoiding:
assumes a: "finite Xs"
and b: "finite (supp c)"
obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"]
unfolding fresh_star_def fresh_def by blast
lemma at_set_avoiding2:
assumes "finite xs"
and "finite (supp c)" "finite (supp x)"
and "xs \<sharp>* x"
shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
using assms
apply(erule_tac c="(c, x)" in at_set_avoiding)
apply(simp add: supp_Pair)
apply(rule_tac x="p" in exI)
apply(simp add: fresh_star_prod)
apply(subgoal_tac "\<forall>a \<in> supp p. a \<sharp> x")
apply(auto simp add: fresh_star_def fresh_def supp_perm)[1]
apply(auto simp add: fresh_star_def fresh_def)
done
lemma at_set_avoiding2_atom:
assumes "finite (supp c)" "finite (supp x)"
and b: "a \<sharp> x"
shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p"
proof -
have a: "{a} \<sharp>* x" unfolding fresh_star_def by (simp add: b)
obtain p where p1: "(p \<bullet> {a}) \<sharp>* c" and p2: "supp x \<sharp>* p"
using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast
have c: "(p \<bullet> a) \<sharp> c" using p1
unfolding fresh_star_def Ball_def
by(erule_tac x="p \<bullet> a" in allE) (simp add: permute_set_eq)
hence "p \<bullet> a \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast
then show "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" by blast
qed
section {* The freshness lemma according to Andy Pitts *}
lemma freshness_lemma:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
proof -
from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b"
by (auto simp add: fresh_Pair)
show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
proof (intro exI allI impI)
fix a :: 'a
assume a3: "atom a \<sharp> h"
show "h a = h b"
proof (cases "a = b")
assume "a = b"
thus "h a = h b" by simp
next
assume "a \<noteq> b"
hence "atom a \<sharp> b" by (simp add: fresh_at_base)
with a3 have "atom a \<sharp> h b"
by (rule fresh_fun_app)
with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)"
by (rule swap_fresh_fresh)
from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h"
by (rule swap_fresh_fresh)
from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp
also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)"
by (rule permute_fun_app_eq)
also have "\<dots> = h a"
using d2 by simp
finally show "h a = h b" by simp
qed
qed
qed
lemma freshness_lemma_unique:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
proof (rule ex_ex1I)
from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
by (rule freshness_lemma)
next
fix x y
assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y"
from a x y show "x = y"
by (auto simp add: fresh_Pair)
qed
text {* packaging the freshness lemma into a function *}
definition
fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
where
"fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
lemma fresh_fun_app:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
assumes b: "atom a \<sharp> h"
shows "fresh_fun h = h a"
unfolding fresh_fun_def
proof (rule the_equality)
show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
proof (intro strip)
fix a':: 'a
assume c: "atom a' \<sharp> h"
from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma)
with b c show "h a' = h a" by auto
qed
next
fix fr :: 'b
assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr"
with b show "fr = h a" by auto
qed
lemma fresh_fun_app':
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
shows "fresh_fun h = h a"
apply (rule fresh_fun_app)
apply (auto simp add: fresh_Pair intro: a)
done
lemma fresh_fun_eqvt:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
using a
apply (clarsimp simp add: fresh_Pair)
apply (subst fresh_fun_app', assumption+)
apply (drule fresh_permute_iff [where p=p, THEN iffD2])
apply (drule fresh_permute_iff [where p=p, THEN iffD2])
apply (simp add: atom_eqvt permute_fun_app_eq [where f=h])
apply (erule (1) fresh_fun_app' [symmetric])
done
lemma fresh_fun_supports:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
shows "(supp h) supports (fresh_fun h)"
apply (simp add: supports_def fresh_def [symmetric])
apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
done
notation fresh_fun (binder "FRESH " 10)
lemma FRESH_f_iff:
fixes P :: "'a::at \<Rightarrow> 'b::pure"
fixes f :: "'b \<Rightarrow> 'c::pure"
assumes P: "finite (supp P)"
shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
proof -
obtain a::'a where "atom a \<notin> supp P"
using P by (rule obtain_at_base)
hence "atom a \<sharp> P"
by (simp add: fresh_def)
show "(FRESH x. f (P x)) = f (FRESH x. P x)"
apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh])
apply (cut_tac `atom a \<sharp> P`)
apply (simp add: fresh_conv_MOST)
apply (elim MOST_rev_mp, rule MOST_I, clarify)
apply (simp add: permute_fun_def permute_pure expand_fun_eq)
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh])
apply (rule refl)
done
qed
lemma FRESH_binop_iff:
fixes P :: "'a::at \<Rightarrow> 'b::pure"
fixes Q :: "'a::at \<Rightarrow> 'c::pure"
fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure"
assumes P: "finite (supp P)"
and Q: "finite (supp Q)"
shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
proof -
from assms have "finite (supp P \<union> supp Q)" by simp
then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)"
by (rule obtain_at_base)
hence "atom a \<sharp> P" and "atom a \<sharp> Q"
by (simp_all add: fresh_def)
show ?thesis
apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh])
apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
apply (simp add: fresh_conv_MOST)
apply (elim MOST_rev_mp, rule MOST_I, clarify)
apply (simp add: permute_fun_def permute_pure expand_fun_eq)
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh])
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
apply (rule refl)
done
qed
lemma FRESH_conj_iff:
fixes P Q :: "'a::at \<Rightarrow> bool"
assumes P: "finite (supp P)" and Q: "finite (supp Q)"
shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)"
using P Q by (rule FRESH_binop_iff)
lemma FRESH_disj_iff:
fixes P Q :: "'a::at \<Rightarrow> bool"
assumes P: "finite (supp P)" and Q: "finite (supp Q)"
shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)"
using P Q by (rule FRESH_binop_iff)
section {* @{const nat_of} is an example of a function
without finite support *}
lemma not_fresh_nat_of:
shows "\<not> a \<sharp> nat_of"
unfolding fresh_def supp_def
proof (clarsimp)
assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}"
hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})"
by simp
then obtain b where
b1: "b \<noteq> a" and
b2: "sort_of b = sort_of a" and
b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of"
by (rule obtain_atom) auto
have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def)
also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq)
also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp
also have "\<dots> = nat_of b" using b2 by simp
finally have "nat_of a = nat_of b" by simp
with b2 have "a = b" by (simp add: atom_components_eq_iff)
with b1 show "False" by simp
qed
lemma supp_nat_of:
shows "supp nat_of = UNIV"
using not_fresh_nat_of [unfolded fresh_def] by auto
section {* Induction principle for permutations *}
lemma perm_struct_induct[consumes 1, case_names zero swap]:
assumes S: "supp p \<subseteq> S"
and zero: "P 0"
and swap: "\<And>p a b. \<lbrakk>P p; supp p \<subseteq> S; a \<in> S; b \<in> S; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
shows "P p"
proof -
have "finite (supp p)" by (simp add: finite_supp)
then show "P p" using S
proof(induct A\<equiv>"supp p" arbitrary: p rule: finite_psubset_induct)
case (psubset p)
then have ih: "\<And>q. supp q \<subset> supp p \<Longrightarrow> P q" by auto
have as: "supp p \<subseteq> S" by fact
{ assume "supp p = {}"
then have "p = 0" by (simp add: supp_perm expand_perm_eq)
then have "P p" using zero by simp
}
moreover
{ assume "supp p \<noteq> {}"
then obtain a where a0: "a \<in> supp p" by blast
then have a1: "p \<bullet> a \<in> S" "a \<in> S" "sort_of (p \<bullet> a) = sort_of a" "p \<bullet> a \<noteq> a" using as
by (auto simp add: supp_atom supp_perm swap_atom)
let ?q = "(p \<bullet> a \<rightleftharpoons> a) + p"
have a2: "supp ?q \<subseteq> supp p" unfolding supp_perm by (auto simp add: swap_atom)
moreover
have "a \<notin> supp ?q" by (simp add: supp_perm)
then have "supp ?q \<noteq> supp p" using a0 by auto
ultimately have "supp ?q \<subset> supp p" using a2 by auto
then have "P ?q" using ih by simp
moreover
have "supp ?q \<subseteq> S" using as a2 by simp
ultimately have "P ((p \<bullet> a \<rightleftharpoons> a) + ?q)" using as a1 swap by simp
moreover
have "p = (p \<bullet> a \<rightleftharpoons> a) + ?q" by (simp add: expand_perm_eq)
ultimately have "P p" by simp
}
ultimately show "P p" by blast
qed
qed
lemma perm_simple_struct_induct[case_names zero swap]:
assumes zero: "P 0"
and swap: "\<And>p a b. \<lbrakk>P p; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
shows "P p"
by (rule_tac S="supp p" in perm_struct_induct)
(auto intro: zero swap)
lemma perm_subset_induct[consumes 1, case_names zero swap plus]:
assumes S: "supp p \<subseteq> S"
assumes zero: "P 0"
assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b; a \<in> S; b \<in> S\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
assumes plus: "\<And>p1 p2. \<lbrakk>P p1; P p2; supp p1 \<subseteq> S; supp p2 \<subseteq> S\<rbrakk> \<Longrightarrow> P (p1 + p2)"
shows "P p"
using S
by (induct p rule: perm_struct_induct)
(auto intro: zero plus swap simp add: supp_swap)
lemma supp_perm_eq:
assumes "(supp x) \<sharp>* p"
shows "p \<bullet> x = x"
proof -
from assms have "supp p \<subseteq> {a. a \<sharp> x}"
unfolding supp_perm fresh_star_def fresh_def by auto
then show "p \<bullet> x = x"
proof (induct p rule: perm_struct_induct)
case zero
show "0 \<bullet> x = x" by simp
next
case (swap p a b)
then have "a \<sharp> x" "b \<sharp> x" "p \<bullet> x = x" by simp_all
then show "((a \<rightleftharpoons> b) + p) \<bullet> x = x" by (simp add: swap_fresh_fresh)
qed
qed
lemma supp_perm_eq_test:
assumes "(supp x) \<sharp>* p"
shows "p \<bullet> x = x"
proof -
from assms have "supp p \<subseteq> {a. a \<sharp> x}"
unfolding supp_perm fresh_star_def fresh_def by auto
then show "p \<bullet> x = x"
proof (induct p rule: perm_subset_induct)
case zero
show "0 \<bullet> x = x" by simp
next
case (swap a b)
then have "a \<sharp> x" "b \<sharp> x" by simp_all
then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh)
next
case (plus p1 p2)
have "p1 \<bullet> x = x" "p2 \<bullet> x = x" by fact+
then show "(p1 + p2) \<bullet> x = x" by simp
qed
qed
section {* Support of Finite Sets of Finitely Supported Elements *}
lemma Union_fresh:
shows "a \<sharp> S \<Longrightarrow> a \<sharp> (\<Union>x \<in> S. supp x)"
unfolding Union_image_eq[symmetric]
apply(rule_tac f="\<lambda>S. \<Union> supp ` S" in fresh_fun_eqvt_app)
apply(perm_simp)
apply(rule refl)
apply(assumption)
done
lemma Union_supports_set:
shows "(\<Union>x \<in> S. supp x) supports S"
proof -
{ fix a b
have "\<forall>x \<in> S. (a \<rightleftharpoons> b) \<bullet> x = x \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> S = S"
unfolding permute_set_eq by force
}
then show "(\<Union>x \<in> S. supp x) supports S"
unfolding supports_def
by (simp add: fresh_def[symmetric] swap_fresh_fresh)
qed
lemma Union_of_fin_supp_sets:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "finite (\<Union>x\<in>S. supp x)"
using fin by (induct) (auto simp add: finite_supp)
lemma Union_included_in_supp:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "(\<Union>x\<in>S. supp x) \<subseteq> supp S"
proof -
have "(\<Union>x\<in>S. supp x) = supp (\<Union>x\<in>S. supp x)"
apply(rule supp_finite_atom_set[symmetric])
apply(rule Union_of_fin_supp_sets[OF fin])
done
also have "\<dots> \<subseteq> supp S"
apply(rule supp_subset_fresh)
apply(simp add: Union_fresh)
done
finally show ?thesis .
qed
lemma supp_of_fin_sets:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "(supp S) = (\<Union>x\<in>S. supp x)"
apply(rule subset_antisym)
apply(rule supp_is_subset)
apply(rule Union_supports_set)
apply(rule Union_of_fin_supp_sets[OF fin])
apply(rule Union_included_in_supp[OF fin])
done
lemma supp_of_fin_union:
fixes S T::"('a::fs) set"
assumes fin1: "finite S"
and fin2: "finite T"
shows "supp (S \<union> T) = supp S \<union> supp T"
using fin1 fin2
by (simp add: supp_of_fin_sets)
lemma supp_of_fin_insert:
fixes S::"('a::fs) set"
assumes fin: "finite S"
shows "supp (insert x S) = supp x \<union> supp S"
using fin
by (simp add: supp_of_fin_sets)
end