IntEx.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Tue, 24 Nov 2009 14:16:57 +0100
changeset 359 64c3c83e0ed4
parent 358 44045c743bfe
child 360 07fb696efa3d
permissions -rw-r--r--
New cleaning tactic

theory IntEx
imports QuotMain
begin

fun
  intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
  "intrel (x, y) (u, v) = (x + v = u + y)"

quotient my_int = "nat \<times> nat" / intrel
  apply(unfold EQUIV_def)
  apply(auto simp add: mem_def expand_fun_eq)
  done

thm my_int_equiv

print_theorems
print_quotients

quotient_def 
  ZERO::"my_int"
where
  "ZERO \<equiv> (0::nat, 0::nat)"

ML {* print_qconstinfo @{context} *}

term ZERO
thm ZERO_def

ML {* prop_of @{thm ZERO_def} *}

ML {* separate *}

quotient_def 
  ONE::"my_int"
where
  "ONE \<equiv> (1::nat, 0::nat)"

ML {* print_qconstinfo @{context} *}

term ONE
thm ONE_def

fun
  my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_plus (x, y) (u, v) = (x + u, y + v)"

quotient_def 
  PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
  "PLUS \<equiv> my_plus"

term my_plus
term PLUS
thm PLUS_def

fun
  my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_neg (x, y) = (y, x)"

quotient_def 
  NEG::"my_int \<Rightarrow> my_int"
where
  "NEG \<equiv> my_neg"

term NEG
thm NEG_def

definition
  MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
  "MINUS z w = PLUS z (NEG w)"

fun
  my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"

quotient_def 
  MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
  "MULT \<equiv> my_mult"

term MULT
thm MULT_def

(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
  my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
  "my_le (x, y) (u, v) = (x+v \<le> u+y)"

quotient_def 
  LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
  "LE \<equiv> my_le"

term LE
thm LE_def


definition
  LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
  "LESS z w = (LE z w \<and> z \<noteq> w)"

term LESS
thm LESS_def

definition
  ABS :: "my_int \<Rightarrow> my_int"
where
  "ABS i = (if (LESS i ZERO) then (NEG i) else i)"

definition
  SIGN :: "my_int \<Rightarrow> my_int"
where
 "SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"

ML {* print_qconstinfo @{context} *}

lemma plus_sym_pre:
  shows "my_plus a b \<approx> my_plus b a"
  apply(cases a)
  apply(cases b)
  apply(auto)
  done

lemma ho_plus_rsp:
  "(intrel ===> intrel ===> intrel) my_plus my_plus"
  by (simp)

ML {* val qty = @{typ "my_int"} *}
ML {* val ty_name = "my_int" *}
ML {* val rsp_thms = @{thms ho_plus_rsp} @ @{thms ho_all_prs ho_ex_prs} *}
ML {* val defs = @{thms PLUS_def} *}

ML {*
fun lift_thm_my_int lthy t =
  lift_thm lthy qty ty_name rsp_thms defs t
*}

ML {*
fun lift_thm_g_my_int lthy t g =
  lift_thm_goal lthy qty ty_name rsp_thms defs t g
*}

print_quotients
ML {* quotdata_lookup @{context} "IntEx.my_int" *}
ML {* quotdata_lookup @{context} "my_int" *}

ML {*
  val test = lift_thm_my_int @{context} @{thm plus_sym_pre}
*}

ML {*
  lift_thm_g_my_int @{context} @{thm plus_sym_pre} @{term "PLUS a b = PLUS b a"}
*}

lemma plus_assoc_pre:
  shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
  apply (cases i)
  apply (cases j)
  apply (cases k)
  apply (simp)
  done

ML {* val test2 = lift_thm_my_int @{context} @{thm plus_assoc_pre} *}

ML {* lift_thm_g_my_int @{context} @{thm plus_assoc_pre} 
         @{term "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"} *}

ML {*
  mk_REGULARIZE_goal @{context} 
    @{term "\<forall>i j k. my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"}
    @{term "\<forall>i j k. PLUS (PLUS i j) k = PLUS i (PLUS j k)"}
  |> Syntax.string_of_term @{context}
  |> writeln
*}

lemma procedure: 
  assumes a: "A"
  and     b: "A \<Longrightarrow> B"
  and     c: "B = C"
  and     d: "C = D"
  shows   "D"
  using a b c d
  by simp

ML {* 
fun procedure_inst ctxt rtrm qtrm =
let
  val thy = ProofContext.theory_of ctxt
  val rtrm' = HOLogic.dest_Trueprop rtrm
  val qtrm' = HOLogic.dest_Trueprop qtrm
  val reg_goal = Syntax.check_term ctxt (REGULARIZE_trm ctxt rtrm' qtrm')
  val inj_goal = Syntax.check_term ctxt (inj_REPABS ctxt (reg_goal, qtrm'))
in
  Drule.instantiate' [] 
    [SOME (cterm_of thy rtrm'), 
     SOME (cterm_of thy reg_goal),
     SOME (cterm_of thy inj_goal)] 
  @{thm procedure}
end

fun procedure_tac rthm =
  Subgoal.FOCUS (fn {context, concl, ...} =>
    let
      val rthm' = atomize_thm rthm
      val rule = procedure_inst context (prop_of rthm') (term_of concl)
    in
      EVERY1 [rtac rule, rtac rthm']
    end)
*}

ML {*
val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} @{typ "my_int"}
val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"
*}

(* FIXME: allex_prs and lambda_prs can be one function *)

ML {*
fun allex_prs_tac lthy quot =
  (EqSubst.eqsubst_tac lthy [0] @{thms FORALL_PRS[symmetric] EXISTS_PRS[symmetric]})
  THEN' (quotient_tac quot);
*}

ML {*
fun lambda_prs_tac lthy quot =
  (EqSubst.eqsubst_tac lthy [0] @{thms LAMBDA_PRS}
  THEN' (RANGE [quotient_tac quot, quotient_tac quot]));
*}

ML {*
fun clean_tac lthy quot defs reps_same =
  let
    val lower = flat (map (add_lower_defs lthy) defs)
  in
    (REPEAT_ALL_NEW (allex_prs_tac lthy quot)) THEN'
    (REPEAT_ALL_NEW (lambda_prs_tac lthy quot)) THEN'
    (REPEAT_ALL_NEW (EqSubst.eqsubst_tac lthy [0] lower)) THEN'
    (simp_tac (HOL_ss addsimps [reps_same]))
  end
*}

lemma "\<forall>i j k. PLUS (PLUS i j) k = PLUS i (PLUS j k)"
apply(tactic {* procedure_tac @{thm plus_assoc_pre} @{context} 1 *})
apply(tactic {* regularize_tac @{context} rel_eqv rel_refl 1 *})
apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *})
apply(tactic {* clean_tac @{context} quot @{thms PLUS_def} reps_same 1 *})
done 

apply(tactic {* REPEAT_ALL_NEW (allex_prs_tac @{context} quot) 1 *})
apply(tactic {* REPEAT_ALL_NEW (lambda_prs_tac @{context} quot) 1 *})
(* phase 2 *)
ML_prf {*
 val lower = add_lower_defs @{context} @{thm PLUS_def}
*}
apply(tactic {* REPEAT_ALL_NEW (EqSubst.eqsubst_tac @{context} [0] lower) 1*})
apply(tactic {* simp_tac (HOL_ss addsimps [reps_same]) 1 *})
done



(*
does not work.
ML {*
fun r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms =
  (REPEAT1 o FIRST1) 
    [(K (print_tac "start")) THEN' (K no_tac), 
     DT ctxt "1" (rtac trans_thm),
     DT ctxt "2" (LAMBDA_RES_TAC ctxt),
     DT ctxt "3" (ball_rsp_tac ctxt),
     DT ctxt "4" (bex_rsp_tac ctxt),
     DT ctxt "5" (FIRST' (map rtac rsp_thms)),
     DT ctxt "6" (instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN' (RANGE [quotient_tac quot_thm])),
     DT ctxt "7" (rtac refl),
     DT ctxt "8" (APPLY_RSP_TAC rty ctxt THEN' (RANGE [quotient_tac quot_thm, quotient_tac quot_thm])),
     DT ctxt "9" (Cong_Tac.cong_tac @{thm cong}),
     DT ctxt "A" (rtac @{thm ext}),
     DT ctxt "B" (rtac reflex_thm),
     DT ctxt "C" (atac),
     DT ctxt "D" (SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))),
     DT ctxt "E" (WEAK_LAMBDA_RES_TAC ctxt),
     DT ctxt "F" (CHANGED' (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ})))]
*}
*)

ML {*
val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} @{typ "my_int"}
val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"
val consts = lookup_quot_consts defs
*}

ML {* cprem_of *}

ML {* 
mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm) 
  |> Syntax.check_term @{context}
*}


ML {* val my_goal = cterm_of @{theory} (mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm)) *}
ML {* val yr_goal = cterm_of @{theory} (build_repabs_goal @{context} (@{thm testtest} OF [arthm]) consts rty qty) *}

prove {* mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm) *}
apply(tactic {* ObjectLogic.full_atomize_tac 1 *})
apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *})
done

ML {*
inj_REPABS @{context} (reg_atrm, aqtrm)  
|> Syntax.string_of_term @{context}
|> writeln
*}


lemma ho_tst: "foldl my_plus x [] = x"
apply simp
done

text {* Below is the construction site code used if things do not work *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int" *}
(* ML {* val consts = [@{const_name my_plus}] *}*)
ML {* val consts = lookup_quot_consts defs *}
ML {* val t_a = atomize_thm @{thm ho_tst} *}

(*
prove t_r: {* build_regularize_goal t_a rty rel @{context} *}
ML_prf {*   fun tac ctxt =
      (ObjectLogic.full_atomize_tac) THEN'
     REPEAT_ALL_NEW (FIRST' [
      rtac rel_refl,
      atac,
      rtac @{thm universal_twice},
      (rtac @{thm impI} THEN' atac),
      (*rtac @{thm equality_twice},*)
      EqSubst.eqsubst_tac ctxt [0]
        [(@{thm equiv_res_forall} OF [rel_eqv]),
         (@{thm equiv_res_exists} OF [rel_eqv])],
      (rtac @{thm impI} THEN' (asm_full_simp_tac (Simplifier.context ctxt HOL_ss)) THEN' rtac rel_refl),
      (rtac @{thm RIGHT_RES_FORALL_REGULAR})
     ]);*}
apply (atomize(full))
apply (tactic {* tac @{context} 1 *})
apply (auto)
done
ML {* val t_r = @{thm t_r} OF [t_a] *}*)
ML {* val t_r = regularize t_a rty rel rel_eqv rel_refl @{context} *}
ML {*
  val rt = build_repabs_term @{context} t_r consts rty qty
  val rg = Logic.mk_equals ((Thm.prop_of t_r), rt);
*}


lemma foldl_rsp:
  "((IntEx.intrel ===> IntEx.intrel ===> IntEx.intrel) ===>
           IntEx.intrel ===> op = ===> IntEx.intrel)
           foldl foldl"
  apply (simp only:FUN_REL.simps)
  apply (rule allI)
  apply (rule allI)
  apply (rule impI)
  apply (rule allI)
  apply (rule allI)
  apply (rule impI)
  apply (rule allI)
  apply (rule allI)
  apply (rule impI)
  apply (simp only:)
  apply (rule list.induct)
  apply (simp)
  apply (simp only: foldl.simps)
  sorry

ML {* val rsp_thms = @{thm foldl_rsp} :: rsp_thms *}
prove t_t: rg
apply(atomize(full))
ML_prf {* fun r_mk_comb_tac_int lthy = r_mk_comb_tac lthy rty quot rel_refl trans2 rsp_thms *}
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_int @{context}) 1 *})
done
ML {* val t_t = @{thm Pure.equal_elim_rule1} OF [@{thm t_t},t_r] *}
ML {* val abs = findabs rty (prop_of t_a) *}
ML {* val aps = findaps rty (prop_of t_a); *}
ML {* val simp_lam_prs_thms = map (make_simp_prs_thm @{context} quot @{thm LAMBDA_PRS}) abs *}

(*ML {* val t_t = repabs @{context} @{thm t_r} consts rty qty quot rel_refl trans2 rsp_thms *}*)
ML findallex
ML {* val (alls, exs) = findallex @{context} rty qty (prop_of t_a) *}
ML {* val allthms = map (make_allex_prs_thm @{context} quot @{thm FORALL_PRS}) alls *}
ML {* val t_a = MetaSimplifier.rewrite_rule (allthms) t_t *}
ML {* val t_l = repeat_eqsubst_thm @{context} simp_lam_prs_thms t_a *}
ML {* val defs_sym = flat (map (add_lower_defs @{context}) defs) *}
ML {* val t_d = repeat_eqsubst_thm @{context} defs_sym t_l *}
ML {* val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d *}
ML {* ObjectLogic.rulify t_r *}
ML {* @{term "Trueprop"} *}