Paper/Paper.thy
author Christian Urban <urbanc@in.tum.de>
Thu, 18 Mar 2010 16:22:10 +0100
changeset 1517 62d6f7acc110
parent 1506 7c607df46a0a
child 1520 6ac75fd979d4
permissions -rw-r--r--
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant

(*<*)
theory Paper
imports "../Nominal/Test" "LaTeXsugar"
begin

notation (latex output)
  swap ("'(_ _')" [1000, 1000] 1000) and
  fresh ("_ # _" [51, 51] 50) and
  fresh_star ("_ #* _" [51, 51] 50) and
  supp ("supp _" [78] 73) and
  uminus ("-_" [78] 73) and
  If  ("if _ then _ else _" 10)
(*>*)

section {* Introduction *}

text {*

  It has not yet fared so well in the POPLmark challenge
  as the second part contain a formalisation of records 
  where ...

  The difficulty can be appreciated by considering that the
  definition given by Leroy in \cite{Leroy92} is incorrect (it omits a
  side-condition).

  Examples: type-schemes, Spi-calculus

  Contributions:  We provide definitions for when terms
  involving general bindings are alpha-equivelent.

  %\begin{center}
  %\begin{pspicture}(0.5,0.0)(8,2.5)
  %%\showgrid
  %\psframe[linewidth=0.4mm,framearc=0.2](5,0.0)(7.7,2.5)
  %\pscircle[linewidth=0.3mm,dimen=middle](6,1.5){0.6}
  %\psframe[linewidth=0.4mm,framearc=0.2,dimen=middle](1.1,2.1)(2.3,0.9)
  
  %\pcline[linewidth=0.4mm]{->}(2.6,1.5)(4.8,1.5)
  
  %\pcline[linewidth=0.2mm](2.2,2.1)(6,2.1)
  %\pcline[linewidth=0.2mm](2.2,0.9)(6,0.9)

  %\rput(7.3,2.2){$\mathtt{phi}$}
  %\rput(6,1.5){$\lama$}
  %\rput[l](7.6,2.05){\begin{tabular}{l}existing\\[-1.6mm]type\end{tabular}}
  %\rput[r](1.2,1.5){\begin{tabular}{l}new\\[-1.6mm]type\end{tabular}}
  %\rput(6.1,0.5){\begin{tabular}{l}non-empty\\[-1.6mm]subset\end{tabular}}
  %\rput[c](1.7,1.5){$\lama$}
  %\rput(3.7,1.75){isomorphism}
  %\end{pspicture}
  %\end{center}

  quotient package \cite{Homeier05}
*}

section {* A Short Review of the Nominal Logic Work *}

text {*
  At its core, Nominal Isabelle is based on the nominal logic work by Pitts
  \cite{Pitts03}. The implementation of this work are described in
  \cite{HuffmanUrban10}, which we review here briefly to aid the description
  of what follows in the next sections. Two central notions in the nominal
  logic work are sorted atoms and permutations of atoms. The sorted atoms
  represent different kinds of variables, such as term- and type-variables in
  Core-Haskell, and it is assumed that there is an infinite supply of atoms
  for each sort. However, in order to simplify the description of our work, we
  shall assume in this paper that there is only a single sort of atoms.

  Permutations are bijective functions from atoms to atoms that are 
  the identity everywhere except on a finite number of atoms. There is a 
  two-place permutation operation written

  @{text[display,indent=5] "_ \<bullet> _  ::  (\<alpha> \<times> \<alpha>) list \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}

  \noindent 
  with a generic type in which @{text "\<alpha>"} stands for the type of atoms 
  and @{text "\<beta>"} for the type of the objects on which the permutation 
  acts. In Nominal Isabelle the identity permutation is written as @{term "0::perm"},
  the composition of two permutations @{term p} and @{term q} as \mbox{@{term "p + q"}} 
  and the inverse permutation @{term p} as @{text "- p"}. The permutation
  operation is defined for products, lists, sets, functions, booleans etc 
  (see \cite{HuffmanUrban10}).

  The most original aspect of the nominal logic work of Pitts et al is a general
  definition for ``the set of free variables of an object @{text "x"}''.  This
  definition is general in the sense that it applies not only to lambda-terms,
  but also to lists, products, sets and even functions. The definition depends
  only on the permutation operation and on the notion of equality defined for
  the type of @{text x}, namely:

  @{thm[display,indent=5] supp_def[no_vars, THEN eq_reflection]}

  \noindent
  There is also the derived notion for when an atom @{text a} is \emph{fresh}
  for an @{text x}, defined as
  
  @{thm[display,indent=5] fresh_def[no_vars]}

  \noindent
  We also use for sets of atoms the abbreviation 
  @{thm (lhs) fresh_star_def[no_vars]} defined as 
  @{thm (rhs) fresh_star_def[no_vars]}.
  A striking consequence of these definitions is that we can prove
  without knowing anything about the structure of @{term x} that
  swapping two fresh atoms, say @{text a} and @{text b}, leave 
  @{text x} unchanged. 

  \begin{property}
  @{thm[mode=IfThen] swap_fresh_fresh[no_vars]}
  \end{property}

  \noindent
  For a proof see \cite{HuffmanUrban10}.

  \begin{property}
  @{thm[mode=IfThen] at_set_avoiding[no_vars]}
  \end{property}

*}


section {* Abstractions *}

text {*
  General notion of alpha-equivalence (depends on a free-variable
  function and a relation).
*}

section {* Alpha-Equivalence and Free Variables *}

section {* Examples *}

section {* Adequacy *}

section {* Related Work *}

section {* Conclusion *}

text {*

  TODO: function definitions:
  \medskip

  \noindent
  {\bf Acknowledgements:} We are very grateful to Andrew Pitts for the 
  many discussions about Nominal Isabelle. We thank Peter Sewell for 
  making the informal notes \cite{SewellBestiary} available to us and 
  also for explaining some of the finer points of the OTT-tool.


*}



(*<*)
end
(*>*)