corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
(*<*)
theory Paper
imports "../Nominal/Test" "LaTeXsugar"
begin
notation (latex output)
swap ("'(_ _')" [1000, 1000] 1000) and
fresh ("_ # _" [51, 51] 50) and
fresh_star ("_ #* _" [51, 51] 50) and
supp ("supp _" [78] 73) and
uminus ("-_" [78] 73) and
If ("if _ then _ else _" 10)
(*>*)
section {* Introduction *}
text {*
It has not yet fared so well in the POPLmark challenge
as the second part contain a formalisation of records
where ...
The difficulty can be appreciated by considering that the
definition given by Leroy in \cite{Leroy92} is incorrect (it omits a
side-condition).
Examples: type-schemes, Spi-calculus
Contributions: We provide definitions for when terms
involving general bindings are alpha-equivelent.
%\begin{center}
%\begin{pspicture}(0.5,0.0)(8,2.5)
%%\showgrid
%\psframe[linewidth=0.4mm,framearc=0.2](5,0.0)(7.7,2.5)
%\pscircle[linewidth=0.3mm,dimen=middle](6,1.5){0.6}
%\psframe[linewidth=0.4mm,framearc=0.2,dimen=middle](1.1,2.1)(2.3,0.9)
%\pcline[linewidth=0.4mm]{->}(2.6,1.5)(4.8,1.5)
%\pcline[linewidth=0.2mm](2.2,2.1)(6,2.1)
%\pcline[linewidth=0.2mm](2.2,0.9)(6,0.9)
%\rput(7.3,2.2){$\mathtt{phi}$}
%\rput(6,1.5){$\lama$}
%\rput[l](7.6,2.05){\begin{tabular}{l}existing\\[-1.6mm]type\end{tabular}}
%\rput[r](1.2,1.5){\begin{tabular}{l}new\\[-1.6mm]type\end{tabular}}
%\rput(6.1,0.5){\begin{tabular}{l}non-empty\\[-1.6mm]subset\end{tabular}}
%\rput[c](1.7,1.5){$\lama$}
%\rput(3.7,1.75){isomorphism}
%\end{pspicture}
%\end{center}
quotient package \cite{Homeier05}
*}
section {* A Short Review of the Nominal Logic Work *}
text {*
At its core, Nominal Isabelle is based on the nominal logic work by Pitts
\cite{Pitts03}. The implementation of this work are described in
\cite{HuffmanUrban10}, which we review here briefly to aid the description
of what follows in the next sections. Two central notions in the nominal
logic work are sorted atoms and permutations of atoms. The sorted atoms
represent different kinds of variables, such as term- and type-variables in
Core-Haskell, and it is assumed that there is an infinite supply of atoms
for each sort. However, in order to simplify the description of our work, we
shall assume in this paper that there is only a single sort of atoms.
Permutations are bijective functions from atoms to atoms that are
the identity everywhere except on a finite number of atoms. There is a
two-place permutation operation written
@{text[display,indent=5] "_ \<bullet> _ :: (\<alpha> \<times> \<alpha>) list \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}
\noindent
with a generic type in which @{text "\<alpha>"} stands for the type of atoms
and @{text "\<beta>"} for the type of the objects on which the permutation
acts. In Nominal Isabelle the identity permutation is written as @{term "0::perm"},
the composition of two permutations @{term p} and @{term q} as \mbox{@{term "p + q"}}
and the inverse permutation @{term p} as @{text "- p"}. The permutation
operation is defined for products, lists, sets, functions, booleans etc
(see \cite{HuffmanUrban10}).
The most original aspect of the nominal logic work of Pitts et al is a general
definition for ``the set of free variables of an object @{text "x"}''. This
definition is general in the sense that it applies not only to lambda-terms,
but also to lists, products, sets and even functions. The definition depends
only on the permutation operation and on the notion of equality defined for
the type of @{text x}, namely:
@{thm[display,indent=5] supp_def[no_vars, THEN eq_reflection]}
\noindent
There is also the derived notion for when an atom @{text a} is \emph{fresh}
for an @{text x}, defined as
@{thm[display,indent=5] fresh_def[no_vars]}
\noindent
We also use for sets of atoms the abbreviation
@{thm (lhs) fresh_star_def[no_vars]} defined as
@{thm (rhs) fresh_star_def[no_vars]}.
A striking consequence of these definitions is that we can prove
without knowing anything about the structure of @{term x} that
swapping two fresh atoms, say @{text a} and @{text b}, leave
@{text x} unchanged.
\begin{property}
@{thm[mode=IfThen] swap_fresh_fresh[no_vars]}
\end{property}
\noindent
For a proof see \cite{HuffmanUrban10}.
\begin{property}
@{thm[mode=IfThen] at_set_avoiding[no_vars]}
\end{property}
*}
section {* Abstractions *}
text {*
General notion of alpha-equivalence (depends on a free-variable
function and a relation).
*}
section {* Alpha-Equivalence and Free Variables *}
section {* Examples *}
section {* Adequacy *}
section {* Related Work *}
section {* Conclusion *}
text {*
TODO: function definitions:
\medskip
\noindent
{\bf Acknowledgements:} We are very grateful to Andrew Pitts for the
many discussions about Nominal Isabelle. We thank Peter Sewell for
making the informal notes \cite{SewellBestiary} available to us and
also for explaining some of the finer points of the OTT-tool.
*}
(*<*)
end
(*>*)