Still unable to show supp=fv for let with one existential.
theory FSet3
imports "../Quotient" "../Quotient_List" List
begin
ML {*
structure QuotientRules = Named_Thms
(val name = "quot_thm"
val description = "Quotient theorems.")
*}
ML {*
open QuotientRules
*}
fun
list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "\<approx>" 50)
where
"list_eq xs ys = (\<forall>x. x \<in> set xs \<longleftrightarrow> x \<in> set ys)"
lemma list_eq_equivp:
shows "equivp list_eq"
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
by auto
(* FIXME-TODO: because of beta-reduction, one cannot give the *)
(* FIXME-TODO: relation as a term or abbreviation *)
quotient_type
'a fset = "'a list" / "list_eq"
by (rule list_eq_equivp)
section {* empty fset, finsert and membership *}
quotient_definition
fempty ("{||}")
where
"fempty :: 'a fset"
is "[]::'a list"
quotient_definition
"finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is "op #"
syntax
"@Finset" :: "args => 'a fset" ("{|(_)|}")
translations
"{|x, xs|}" == "CONST finsert x {|xs|}"
"{|x|}" == "CONST finsert x {||}"
definition
memb :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
where
"memb x xs \<equiv> x \<in> set xs"
quotient_definition
fin ("_ |\<in>| _" [50, 51] 50)
where
"fin :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool"
is "memb"
abbreviation
fnotin :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ |\<notin>| _" [50, 51] 50)
where
"a |\<notin>| S \<equiv> \<not>(a |\<in>| S)"
lemma memb_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op =) memb memb"
by (auto simp add: memb_def)
lemma nil_rsp[quot_respect]:
shows "[] \<approx> []"
by simp
lemma cons_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) op # op #"
by simp
section {* Augmenting a set -- @{const finsert} *}
text {* raw section *}
lemma nil_not_cons:
shows "\<not>[] \<approx> x # xs"
by auto
lemma memb_cons_iff:
shows "memb x (y # xs) = (x = y \<or> memb x xs)"
by (induct xs) (auto simp add: memb_def)
lemma memb_consI1:
shows "memb x (x # xs)"
by (simp add: memb_def)
lemma memb_consI2:
shows "memb x xs \<Longrightarrow> memb x (y # xs)"
by (simp add: memb_def)
lemma memb_absorb:
shows "memb x xs \<Longrightarrow> x # xs \<approx> xs"
by (induct xs) (auto simp add: memb_def id_simps)
text {* lifted section *}
lemma fin_finsert_iff[simp]:
"x |\<in>| finsert y S = (x = y \<or> x |\<in>| S)"
by (lifting memb_cons_iff)
lemma
shows finsertI1: "x |\<in>| finsert x S"
and finsertI2: "x |\<in>| S \<Longrightarrow> x |\<in>| finsert y S"
by (lifting memb_consI1, lifting memb_consI2)
lemma finsert_absorb [simp]:
shows "x |\<in>| S \<Longrightarrow> finsert x S = S"
by (lifting memb_absorb)
section {* Singletons *}
text {* raw section *}
lemma singleton_list_eq:
shows "[x] \<approx> [y] \<longleftrightarrow> x = y"
by (simp add: id_simps) auto
text {* lifted section *}
lemma fempty_not_finsert[simp]:
shows "{||} \<noteq> finsert x S"
by (lifting nil_not_cons)
lemma fsingleton_eq[simp]:
shows "{|x|} = {|y|} \<longleftrightarrow> x = y"
by (lifting singleton_list_eq)
section {* Union *}
quotient_definition
funion (infixl "|\<union>|" 65)
where
"funion :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"op @"
section {* Cardinality of finite sets *}
fun
fcard_raw :: "'a list \<Rightarrow> nat"
where
fcard_raw_nil: "fcard_raw [] = 0"
| fcard_raw_cons: "fcard_raw (x # xs) = (if memb x xs then fcard_raw xs else Suc (fcard_raw xs))"
quotient_definition
"fcard :: 'a fset \<Rightarrow> nat"
is "fcard_raw"
text {* raw section *}
lemma fcard_raw_ge_0:
assumes a: "x \<in> set xs"
shows "0 < fcard_raw xs"
using a
by (induct xs) (auto simp add: memb_def)
lemma fcard_raw_delete_one:
"fcard_raw ([x \<leftarrow> xs. x \<noteq> y]) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
by (induct xs) (auto dest: fcard_raw_ge_0 simp add: memb_def)
lemma fcard_raw_rsp_aux:
assumes a: "a \<approx> b"
shows "fcard_raw a = fcard_raw b"
using a
apply(induct a arbitrary: b)
apply(auto simp add: memb_def)
apply(metis)
apply(drule_tac x="[x \<leftarrow> b. x \<noteq> a1]" in meta_spec)
apply(simp add: fcard_raw_delete_one)
apply(metis Suc_pred' fcard_raw_ge_0 fcard_raw_delete_one memb_def)
done
lemma fcard_raw_rsp[quot_respect]:
"(op \<approx> ===> op =) fcard_raw fcard_raw"
by (simp add: fcard_raw_rsp_aux)
text {* lifted section *}
lemma fcard_fempty [simp]:
shows "fcard {||} = 0"
by (lifting fcard_raw_nil)
lemma fcard_finsert_if [simp]:
shows "fcard (finsert x S) = (if x |\<in>| S then fcard S else Suc (fcard S))"
by (lifting fcard_raw_cons)
section {* Induction and Cases rules for finite sets *}
lemma fset_exhaust[case_names fempty finsert, cases type: fset]:
shows "\<lbrakk>S = {||} \<Longrightarrow> P; \<And>x S'. S = finsert x S' \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (lifting list.exhaust)
lemma fset_induct[case_names fempty finsert]:
shows "\<lbrakk>P {||}; \<And>x S. P S \<Longrightarrow> P (finsert x S)\<rbrakk> \<Longrightarrow> P S"
by (lifting list.induct)
lemma fset_induct2[case_names fempty finsert, induct type: fset]:
assumes prem1: "P {||}"
and prem2: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
shows "P S"
proof(induct S rule: fset_induct)
case fempty
show "P {||}" by (rule prem1)
next
case (finsert x S)
have asm: "P S" by fact
show "P (finsert x S)"
proof(cases "x |\<in>| S")
case True
have "x |\<in>| S" by fact
then show "P (finsert x S)" using asm by simp
next
case False
have "x |\<notin>| S" by fact
then show "P (finsert x S)" using prem2 asm by simp
qed
qed
section {* fmap and fset comprehension *}
quotient_definition
"fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
is
"map"
quotient_definition
"fconcat :: ('a fset) fset => 'a fset"
is
"concat"
(*lemma fconcat_rsp[quot_respect]:
shows "((list_rel op \<approx>) ===> op \<approx>) concat concat"
apply(auto)
sorry
*)
(* PROBLEM: these lemmas needs to be restated, since *)
(* concat.simps(1) and concat.simps(2) contain the *)
(* type variables ?'a1.0 (which are turned into frees *)
(* 'a_1 *)
lemma concat1:
shows "concat [] \<approx> []"
by (simp add: id_simps)
lemma concat2:
shows "concat (x # xs) \<approx> x @ concat xs"
by (simp add: id_simps)
lemma concat_rsp[quot_respect]:
shows "(list_rel op \<approx> OOO op \<approx> ===> op \<approx>) concat concat"
sorry
lemma nil_rsp2[quot_respect]: "(list_rel op \<approx> OOO op \<approx>) [] []"
apply (metis FSet3.nil_rsp list_rel.simps(1) pred_comp.intros)
done
lemma set_in_eq: "(\<forall>e. ((e \<in> A) \<longleftrightarrow> (e \<in> B))) \<equiv> A = B"
apply (rule eq_reflection)
apply auto
done
lemma map_rel_cong: "b \<approx> ba \<Longrightarrow> map f b \<approx> map f ba"
unfolding list_eq.simps
apply(simp only: set_map set_in_eq)
done
lemma quotient_compose_list_pre:
"(list_rel op \<approx> OOO op \<approx>) r s =
((list_rel op \<approx> OOO op \<approx>) r r \<and> (list_rel op \<approx> OOO op \<approx>) s s \<and>
abs_fset (map abs_fset r) = abs_fset (map abs_fset s))"
apply rule
apply rule
apply rule
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply rule
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply(rule)
apply rule
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply rule
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply (subgoal_tac "map abs_fset r \<approx> map abs_fset s")
apply (metis Quotient_rel[OF Quotient_fset])
apply (auto simp only:)[1]
apply (subgoal_tac "map abs_fset r = map abs_fset b")
prefer 2
apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
apply (subgoal_tac "map abs_fset s = map abs_fset ba")
prefer 2
apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
apply (simp only: map_rel_cong)
apply rule
apply (rule rep_abs_rsp[of "list_rel op \<approx>" "map abs_fset"])
apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply rule
prefer 2
apply (rule rep_abs_rsp_left[of "list_rel op \<approx>" "map abs_fset"])
apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply (erule conjE)+
apply (subgoal_tac "map abs_fset r \<approx> map abs_fset s")
prefer 2
apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp)
apply (rule map_rel_cong)
apply (assumption)
done
lemma quotient_compose_list[quot_thm]:
shows "Quotient ((list_rel op \<approx>) OOO (op \<approx>))
(abs_fset \<circ> (map abs_fset)) ((map rep_fset) \<circ> rep_fset)"
unfolding Quotient_def comp_def
apply (rule)+
apply (simp add: abs_o_rep[OF Quotient_fset] id_simps Quotient_abs_rep[OF Quotient_fset])
apply (rule)
apply (rule)
apply (rule)
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply (rule)
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply rule
apply rule
apply(rule quotient_compose_list_pre)
done
lemma fconcat_empty:
shows "fconcat {||} = {||}"
apply(lifting concat1)
apply(cleaning)
apply(simp add: comp_def)
apply(fold fempty_def[simplified id_simps])
apply(rule refl)
done
(* Should be true *)
lemma insert_rsp2[quot_respect]:
"(op \<approx> ===> list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx>) op # op #"
apply auto
apply (simp add: set_in_eq)
sorry
lemma append_rsp[quot_respect]:
"(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by (auto)
lemma fconcat_insert:
shows "fconcat (finsert x S) = x |\<union>| fconcat S"
apply(lifting concat2)
apply(cleaning)
apply (simp add: finsert_def fconcat_def comp_def)
apply cleaning
done
text {* raw section *}
lemma map_rsp_aux:
assumes a: "a \<approx> b"
shows "map f a \<approx> map f b"
using a
apply(induct a arbitrary: b)
apply(auto)
apply(metis rev_image_eqI)
done
lemma map_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) map map"
by (auto simp add: map_rsp_aux)
text {* lifted section *}
(* TBD *)
text {* syntax for fset comprehensions (adapted from lists) *}
nonterminals fsc_qual fsc_quals
syntax
"_fsetcompr" :: "'a \<Rightarrow> fsc_qual \<Rightarrow> fsc_quals \<Rightarrow> 'a fset" ("{|_ . __")
"_fsc_gen" :: "'a \<Rightarrow> 'a fset \<Rightarrow> fsc_qual" ("_ <- _")
"_fsc_test" :: "bool \<Rightarrow> fsc_qual" ("_")
"_fsc_end" :: "fsc_quals" ("|}")
"_fsc_quals" :: "fsc_qual \<Rightarrow> fsc_quals \<Rightarrow> fsc_quals" (", __")
"_fsc_abs" :: "'a => 'b fset => 'b fset"
syntax (xsymbols)
"_fsc_gen" :: "'a \<Rightarrow> 'a fset \<Rightarrow> fsc_qual" ("_ \<leftarrow> _")
syntax (HTML output)
"_fsc_gen" :: "'a \<Rightarrow> 'a fset \<Rightarrow> fsc_qual" ("_ \<leftarrow> _")
parse_translation (advanced) {*
let
val femptyC = Syntax.const @{const_name fempty};
val finsertC = Syntax.const @{const_name finsert};
val fmapC = Syntax.const @{const_name fmap};
val fconcatC = Syntax.const @{const_name fconcat};
val IfC = Syntax.const @{const_name If};
fun fsingl x = finsertC $ x $ femptyC;
fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *)
let
val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT);
val e = if opti then fsingl e else e;
val case1 = Syntax.const "_case1" $ p $ e;
val case2 = Syntax.const "_case1" $ Syntax.const Term.dummy_patternN
$ femptyC;
val cs = Syntax.const "_case2" $ case1 $ case2
val ft = Datatype_Case.case_tr false Datatype.info_of_constr
ctxt [x, cs]
in lambda x ft end;
fun abs_tr ctxt (p as Free(s,T)) e opti =
let val thy = ProofContext.theory_of ctxt;
val s' = Sign.intern_const thy s
in if Sign.declared_const thy s'
then (pat_tr ctxt p e opti, false)
else (lambda p e, true)
end
| abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false);
fun fsc_tr ctxt [e, Const("_fsc_test",_) $ b, qs] =
let
val res = case qs of
Const("_fsc_end",_) => fsingl e
| Const("_fsc_quals",_)$ q $ qs => fsc_tr ctxt [e, q, qs];
in
IfC $ b $ res $ femptyC
end
| fsc_tr ctxt [e, Const("_fsc_gen",_) $ p $ es, Const("_fsc_end",_)] =
(case abs_tr ctxt p e true of
(f,true) => fmapC $ f $ es
| (f, false) => fconcatC $ (fmapC $ f $ es))
| fsc_tr ctxt [e, Const("_fsc_gen",_) $ p $ es, Const("_fsc_quals",_) $ q $ qs] =
let
val e' = fsc_tr ctxt [e, q, qs];
in
fconcatC $ (fmapC $ (fst (abs_tr ctxt p e' false)) $ es)
end
in [("_fsetcompr", fsc_tr)] end
*}
(* NEEDS FIXING *)
(* examles *)
(*
term "{|(x,y,z). b|}"
term "{|x. x \<leftarrow> xs|}"
term "{|(x,y,z). x\<leftarrow>xs|}"
term "{|e x y. x\<leftarrow>xs, y\<leftarrow>ys|}"
term "{|(x,y,z). x<a, x>b|}"
term "{|(x,y,z). x\<leftarrow>xs, x>b|}"
term "{|(x,y,z). x<a, x\<leftarrow>xs|}"
term "{|(x,y). Cons True x \<leftarrow> xs|}"
term "{|(x,y,z). Cons x [] \<leftarrow> xs|}"
term "{|(x,y,z). x<a, x>b, x=d|}"
term "{|(x,y,z). x<a, x>b, y\<leftarrow>ys|}"
term "{|(x,y,z). x<a, x\<leftarrow>xs,y>b|}"
term "{|(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys|}"
term "{|(x,y,z). x\<leftarrow>xs, x>b, y<a|}"
term "{|(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys|}"
term "{|(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x|}"
term "{|(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs|}"
*)
(* BELOW CONSTRUCTION SITE *)
lemma no_mem_nil:
"(\<forall>a. a \<notin> set A) = (A = [])"
by (induct A) (auto)
lemma none_mem_nil:
"(\<forall>a. a \<notin> set A) = (A \<approx> [])"
by simp
lemma mem_cons:
"a \<in> set A \<Longrightarrow> a # A \<approx> A"
by auto
lemma cons_left_comm:
"x # y # A \<approx> y # x # A"
by (auto simp add: id_simps)
lemma cons_left_idem:
"x # x # A \<approx> x # A"
by (auto simp add: id_simps)
lemma finite_set_raw_strong_cases:
"(X = []) \<or> (\<exists>a Y. ((a \<notin> set Y) \<and> (X \<approx> a # Y)))"
apply (induct X)
apply (simp)
apply (rule disjI2)
apply (erule disjE)
apply (rule_tac x="a" in exI)
apply (rule_tac x="[]" in exI)
apply (simp)
apply (erule exE)+
apply (case_tac "a = aa")
apply (rule_tac x="a" in exI)
apply (rule_tac x="Y" in exI)
apply (simp)
apply (rule_tac x="aa" in exI)
apply (rule_tac x="a # Y" in exI)
apply (auto)
done
fun
delete_raw :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list"
where
"delete_raw [] x = []"
| "delete_raw (a # A) x = (if (a = x) then delete_raw A x else a # (delete_raw A x))"
lemma mem_delete_raw:
"x \<in> set (delete_raw A a) = (x \<in> set A \<and> \<not>(x = a))"
by (induct A arbitrary: x a) (auto)
lemma mem_delete_raw_ident:
"\<not>(a \<in> set (delete_raw A a))"
by (induct A) (auto)
lemma not_mem_delete_raw_ident:
"b \<notin> set A \<Longrightarrow> (delete_raw A b = A)"
by (induct A) (auto)
lemma delete_raw_RSP:
"A \<approx> B \<Longrightarrow> delete_raw A a \<approx> delete_raw B a"
apply(induct A arbitrary: B a)
apply(auto)
sorry
lemma cons_delete_raw:
"a # (delete_raw A a) \<approx> (if a \<in> set A then A else (a # A))"
sorry
lemma mem_cons_delete_raw:
"a \<in> set A \<Longrightarrow> a # (delete_raw A a) \<approx> A"
sorry
lemma finite_set_raw_delete_raw_cases:
"X = [] \<or> (\<exists>a. a mem X \<and> X \<approx> a # delete_raw X a)"
by (induct X) (auto)
lemma list2set_thm:
shows "set [] = {}"
and "set (h # t) = insert h (set t)"
by (auto)
lemma list2set_RSP:
"A \<approx> B \<Longrightarrow> set A = set B"
by auto
definition
rsp_fold
where
"rsp_fold f = (\<forall>u v w. (f u (f v w) = f v (f u w)))"
primrec
fold_raw :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
where
"fold_raw f z [] = z"
| "fold_raw f z (a # A) =
(if (rsp_fold f) then
if a mem A then fold_raw f z A
else f a (fold_raw f z A)
else z)"
lemma mem_lcommuting_fold_raw:
"rsp_fold f \<Longrightarrow> h mem B \<Longrightarrow> fold_raw f z B = f h (fold_raw f z (delete_raw B h))"
sorry
lemma fold_rsp[quot_respect]:
"(op = ===> op = ===> op \<approx> ===> op =) fold_raw fold_raw"
apply(auto)
sorry
primrec
inter_raw
where
"inter_raw [] B = []"
| "inter_raw (a # A) B = (if a mem B then a # inter_raw A B else inter_raw A B)"
lemma mem_inter_raw:
"x mem (inter_raw A B) = x mem A \<and> x mem B"
sorry
lemma inter_raw_RSP:
"A1 \<approx> A2 \<and> B1 \<approx> B2 \<Longrightarrow> (inter_raw A1 B1) \<approx> (inter_raw A2 B2)"
sorry
(* LIFTING DEFS *)
section {* Constants on the Quotient Type *}
quotient_definition
"fdelete :: 'a fset \<Rightarrow> 'a \<Rightarrow> 'a fset"
is "delete_raw"
quotient_definition
finter ("_ \<inter>f _" [70, 71] 70)
where
"finter :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is "inter_raw"
quotient_definition
"ffold :: ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b"
is "fold_raw"
quotient_definition
"fset_to_set :: 'a fset \<Rightarrow> 'a set"
is "set"
section {* Lifted Theorems *}
thm list.cases (* ??? *)
thm cons_left_comm
lemma "finsert a (finsert b S) = finsert b (finsert a S)"
by (lifting cons_left_comm)
thm cons_left_idem
lemma "finsert a (finsert a S) = finsert a S"
by (lifting cons_left_idem)
(* thm MEM:
MEM x [] = F
MEM x (h::t) = (x=h) \/ MEM x t *)
thm none_mem_nil
(*lemma "(\<forall>a. a \<notin>f A) = (A = fempty)"*)
thm mem_cons
thm finite_set_raw_strong_cases
(*thm card_raw.simps*)
(*thm not_mem_card_raw*)
(*thm card_raw_suc*)
lemma "fcard X = Suc n \<Longrightarrow> (\<exists>a S. a \<notin>f S & X = finsert a S)"
(*by (lifting card_raw_suc)*)
sorry
(*thm card_raw_cons_gt_0
thm mem_card_raw_gt_0
thm not_nil_equiv_cons
*)
thm delete_raw.simps
(*thm mem_delete_raw*)
(*thm card_raw_delete_raw*)
thm cons_delete_raw
thm mem_cons_delete_raw
thm finite_set_raw_delete_raw_cases
thm append.simps
(* MEM_APPEND: MEM e (APPEND l1 l2) = MEM e l1 \/ MEM e l2 *)
thm inter_raw.simps
thm mem_inter_raw
thm fold_raw.simps
thm list2set_thm
thm list_eq_def
thm list.induct
lemma "\<lbrakk>P fempty; \<And>a x. P x \<Longrightarrow> P (finsert a x)\<rbrakk> \<Longrightarrow> P l"
by (lifting list.induct)
(* We also have map and some properties of it in FSet *)
(* and the following which still lifts ok *)
lemma "funion (funion x xa) xb = funion x (funion xa xb)"
by (lifting append_assoc)
quotient_definition
"fset_case :: 'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
is
"list_case"
(* NOT SURE IF TRUE *)
lemma list_case_rsp[quot_respect]:
"(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
apply (auto)
sorry
lemma "fset_case (f1::'t) f2 (finsert a xa) = f2 a xa"
apply (lifting list.cases(2))
done
end