SFT/LambdaTerms: rename 'var' to 'name' to match Lambda.
header {* Definition of Lambda terms and convertibility *}
theory LambdaTerms imports "../../Nominal2" begin
lemma [simp]: "supp x = {} \<Longrightarrow> y \<sharp> x"
unfolding fresh_def by blast
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
notation
App (infixl "\<cdot>" 98) and
Lam ("\<integral> _. _" [97, 97] 99)
nominal_primrec
subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::= _]" [90, 90, 90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(t1 \<cdot> t2)[y ::= s] = (t1[y ::= s]) \<cdot> (t2[y ::= s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (\<integral>x. t)[y ::= s] = \<integral>x.(t[y ::= s])"
proof auto
fix a b :: lam and aa :: name and P
assume "\<And>x y s. a = Var x \<and> aa = y \<and> b = s \<Longrightarrow> P"
"\<And>t1 t2 y s. a = t1 \<cdot> t2 \<and> aa = y \<and> b = s \<Longrightarrow> P"
"\<And>x y s t. \<lbrakk>atom x \<sharp> (y, s); a = \<integral> x. t \<and> aa = y \<and> b = s\<rbrakk> \<Longrightarrow> P"
then show "P"
by (rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
(blast, blast, simp add: fresh_star_def)
next
fix x :: name and t and xa :: name and ya sa ta
assume *: "eqvt_at subst_sumC (t, ya, sa)"
"atom x \<sharp> (ya, sa)" "atom xa \<sharp> (ya, sa)"
"[[atom x]]lst. t = [[atom xa]]lst. ta"
then show "[[atom x]]lst. subst_sumC (t, ya, sa) = [[atom xa]]lst. subst_sumC (ta, ya, sa)"
apply -
apply (erule Abs_lst1_fcb)
apply(simp (no_asm) add: Abs_fresh_iff)
apply(drule_tac a="atom xa" in fresh_eqvt_at)
apply(simp add: finite_supp)
apply(simp_all add: fresh_Pair_elim Abs_fresh_iff Abs1_eq_iff)
apply(subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> ya = ya")
apply(subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> sa = sa")
apply(simp add: atom_eqvt eqvt_at_def)
apply(rule perm_supp_eq, simp add: supp_swap fresh_star_def fresh_Pair)+
done
next
show "eqvt subst_graph" unfolding eqvt_def subst_graph_def
by (rule, perm_simp, rule)
qed
termination (eqvt) by lexicographic_order
lemma forget[simp]:
shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
by (nominal_induct t avoiding: x s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma forget_closed[simp]: "supp t = {} \<Longrightarrow> t[x ::= s] = t"
by (simp add: fresh_def)
lemma subst_id[simp]: "M [x ::= Var x] = M"
by (rule_tac lam="M" and c="x" in lam.strong_induct)
(simp_all add: fresh_star_def lam.fresh fresh_Pair)
inductive
beta :: "lam \<Rightarrow> lam \<Rightarrow> bool" (infix "\<approx>" 80)
where
bI: "(\<integral>x. M) \<cdot> N \<approx> M[x ::= N]"
| b1: "M \<approx> M"
| b2: "M \<approx> N \<Longrightarrow> N \<approx> M"
| b3: "M \<approx> N \<Longrightarrow> N \<approx> L \<Longrightarrow> M \<approx> L"
| b4: "M \<approx> N \<Longrightarrow> Z \<cdot> M \<approx> Z \<cdot> N"
| b5: "M \<approx> N \<Longrightarrow> M \<cdot> Z \<approx> N \<cdot> Z"
| b6: "M \<approx> N \<Longrightarrow> \<integral>x. M \<approx> \<integral>x. N"
lemmas [trans] = b3
equivariance beta
end