(* Title: nominal_dt_rawfuns.ML Author: Cezary Kaliszyk Author: Christian Urban Definitions of the raw fv, fv_bn and permute functions.*)signature NOMINAL_DT_RAWFUNS =sig (* info of raw datatypes *) type dt_info = (string list * binding * mixfix * ((binding * typ list * mixfix) list)) list (* info of raw binding functions *) type bn_info = term * int * (int * term option) list list (* binding modes and binding clauses *) datatype bmode = Lst | Res | Set datatype bclause = BC of bmode * (term option * int) list * int list val get_all_binders: bclause list -> (term option * int) list val is_recursive_binder: bclause -> bool val define_raw_bns: string list -> dt_info -> (binding * typ option * mixfix) list -> (Attrib.binding * term) list -> thm list -> thm list -> local_theory -> (term list * thm list * bn_info list * thm list * local_theory) val define_raw_fvs: string list -> typ list -> cns_info list -> bn_info list -> bclause list list list -> thm list -> thm list -> Proof.context -> term list * term list * thm list * thm list * local_theory val define_raw_bn_perms: typ list -> bn_info list -> cns_info list -> thm list -> thm list -> local_theory -> (term list * thm list * local_theory) val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm -> local_theory -> (term list * thm list * thm list) * local_theoryendstructure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =struct(* string list - type variables of a datatype binding - name of the datatype mixfix - its mixfix (binding * typ list * mixfix) list - datatype constructors of the type*) type dt_info = (string list * binding * mixfix * ((binding * typ list * mixfix) list)) list(* term - is constant of the bn-function int - is datatype number over which the bn-function is defined int * term option - is number of the corresponding argument with possibly recursive call with bn-function term *) type bn_info = term * int * (int * term option) list listdatatype bmode = Lst | Res | Setdatatype bclause = BC of bmode * (term option * int) list * int listfun get_all_binders bclauses = bclauses |> map (fn (BC (_, binders, _)) => binders) |> flat |> remove_dups (op =)fun is_recursive_binder (BC (_, binders, bodies)) = case (inter (op =) (map snd binders) bodies) of nil => false | _ => truefun lookup xs x = the (AList.lookup (op=) xs x)(** functions that define the raw binding functions **)(* strip_bn_fun takes a rhs of a bn function: this can only contain unions or appends of elements; in case of recursive calls it returns also the applied bn function *)fun strip_bn_fun lthy args t =let fun aux t = case t of Const (@{const_name sup}, _) $ l $ r => aux l @ aux r | Const (@{const_name append}, _) $ l $ r => aux l @ aux r | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ (x as Var _)) $ y => (find_index (equal x) args, NONE) :: aux y | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ (x as Var _)) $ y => (find_index (equal x) args, NONE) :: aux y | Const (@{const_name bot}, _) => [] | Const (@{const_name Nil}, _) => [] | (f as Const _) $ (x as Var _) => [(find_index (equal x) args, SOME f)] | _ => error ("Unsupported binding function: " ^ (Syntax.string_of_term lthy t))in aux tend (** definition of the raw binding functions **)fun prep_bn_info lthy dt_names dts bn_funs eqs = let fun process_eq eq = let val (lhs, rhs) = eq |> HOLogic.dest_Trueprop |> HOLogic.dest_eq val (bn_fun, [cnstr]) = strip_comb lhs val (_, ty) = dest_Const bn_fun val (ty_name, _) = dest_Type (domain_type ty) val dt_index = find_index (fn x => x = ty_name) dt_names val (cnstr_head, cnstr_args) = strip_comb cnstr val cnstr_name = Long_Name.base_name (fst (dest_Const cnstr_head)) val rhs_elements = strip_bn_fun lthy cnstr_args rhs in ((bn_fun, dt_index), (cnstr_name, rhs_elements)) end (* order according to constructor names *) fun cntrs_order ((bn, dt_index), data) = let val dt = nth dts dt_index val cts = (fn (_, _, _, x) => x) dt val ct_names = map (Binding.name_of o (fn (x, _, _) => x)) cts in (bn, (bn, dt_index, order (op=) ct_names data)) end in eqs |> map process_eq |> AList.group (op=) (* eqs grouped according to bn_functions *) |> map cntrs_order (* inner data ordered according to constructors *) |> order (op=) bn_funs (* ordered according to bn_functions *)endfun define_raw_bns dt_names dts raw_bn_funs raw_bn_eqs constr_thms size_thms lthy = if null raw_bn_funs then ([], [], [], [], lthy) else let val (_, lthy1) = Function.add_function raw_bn_funs raw_bn_eqs Function_Common.default_config (pat_completeness_simp constr_thms) lthy val (info, lthy2) = prove_termination_fun size_thms (Local_Theory.restore lthy1) val {fs, simps, inducts, ...} = info val raw_bn_induct = (the inducts) val raw_bn_eqs = the simps val raw_bn_info = prep_bn_info lthy dt_names dts fs (map prop_of raw_bn_eqs) in (fs, raw_bn_eqs, raw_bn_info, raw_bn_induct, lthy2) end(** functions that construct the equations for fv and fv_bn **)fun mk_fv_rhs lthy fv_map fv_bn_map args (BC (bmode, binders, bodies)) = let fun mk_fv_body fv_map args i = let val arg = nth args i val ty = fastype_of arg in case AList.lookup (op=) fv_map ty of NONE => mk_supp arg | SOME fv => fv $ arg end fun mk_fv_binder lthy fv_bn_map args binders = let fun bind_set lthy args (NONE, i) = (setify lthy (nth args i), @{term "{}::atom set"}) | bind_set _ args (SOME bn, i) = (bn $ (nth args i), if member (op=) bodies i then @{term "{}::atom set"} else lookup fv_bn_map bn $ (nth args i)) fun bind_lst lthy args (NONE, i) = (listify lthy (nth args i), @{term "[]::atom list"}) | bind_lst _ args (SOME bn, i) = (bn $ (nth args i), if member (op=) bodies i then @{term "[]::atom list"} else lookup fv_bn_map bn $ (nth args i)) val (combine_fn, bind_fn) = case bmode of Lst => (fold_append, bind_lst) | Set => (fold_union, bind_set) | Res => (fold_union, bind_set) in binders |> map (bind_fn lthy args) |> split_list |> pairself combine_fn end val t1 = map (mk_fv_body fv_map args) bodies val (t2, t3) = mk_fv_binder lthy fv_bn_map args binders in mk_union (mk_diff (fold_union t1, to_set t2), to_set t3) end(* in case of fv_bn we have to treat the case special, where an "empty" binding clause is given *)fun mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause = let fun mk_fv_bn_body i = let val arg = nth args i val ty = fastype_of arg in case AList.lookup (op=) bn_args i of NONE => (case (AList.lookup (op=) fv_map ty) of NONE => mk_supp arg | SOME fv => fv $ arg) | SOME (NONE) => @{term "{}::atom set"} | SOME (SOME bn) => lookup fv_bn_map bn $ arg end in case bclause of BC (_, [], bodies) => fold_union (map mk_fv_bn_body bodies) | _ => mk_fv_rhs lthy fv_map fv_bn_map args bclause endfun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys, _) bclauses = let val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) val fv = lookup fv_map ty val lhs = fv $ list_comb (constr, args) val rhs_trms = map (mk_fv_rhs lthy fv_map fv_bn_map args) bclauses val rhs = fold_union rhs_trms in HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) endfun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys, _)) bclauses = let val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) val fv_bn = lookup fv_bn_map bn_trm val lhs = fv_bn $ list_comb (constr, args) val rhs_trms = map (mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses val rhs = fold_union rhs_trms in HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) endfun mk_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = let val nth_constrs_info = nth constrs_info bn_n val nth_bclausess = nth bclausesss bn_n in map2 (mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess endfun define_raw_fvs raw_full_ty_names raw_tys cns_info bn_info bclausesss constr_thms size_simps lthy = let val fv_names = map (prefix "fv_" o Long_Name.base_name) raw_full_ty_names val fv_tys = map (fn ty => ty --> @{typ "atom set"}) raw_tys val fv_frees = map Free (fv_names ~~ fv_tys); val fv_map = raw_tys ~~ fv_frees val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info) val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns val fv_bn_names = map (prefix "fv_") bn_names val fv_bn_arg_tys = map (nth raw_tys) bn_tys val fv_bn_tys = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys val fv_bn_frees = map Free (fv_bn_names ~~ fv_bn_tys) val fv_bn_map = bns ~~ fv_bn_frees val fv_eqs = map2 (map2 (mk_fv_eq lthy fv_map fv_bn_map)) cns_info bclausesss val fv_bn_eqs = map (mk_fv_bn_eqs lthy fv_map fv_bn_map cns_info bclausesss) bn_info val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names) val all_fun_eqs = map (pair Attrib.empty_binding) (flat fv_eqs @ flat fv_bn_eqs) val (_, lthy') = Function.add_function all_fun_names all_fun_eqs Function_Common.default_config (pat_completeness_simp constr_thms) lthy val (info, lthy'') = prove_termination_fun size_simps (Local_Theory.restore lthy') val {fs, simps, inducts, ...} = info; val morphism = ProofContext.export_morphism lthy'' lthy val simps_exp = map (Morphism.thm morphism) (the simps) val inducts_exp = map (Morphism.thm morphism) (the inducts) val (fvs', fv_bns') = chop (length fv_frees) fs in (fvs', fv_bns', simps_exp, inducts_exp, lthy'') end(** definition of raw permute_bn functions **)fun mk_perm_bn_eq_rhs p perm_bn_map bn_args (i, arg) = case AList.lookup (op=) bn_args i of NONE => arg | SOME (NONE) => mk_perm p arg | SOME (SOME bn) => (lookup perm_bn_map bn) $ p $ arg fun mk_perm_bn_eq lthy bn_trm perm_bn_map bn_args (constr, _, arg_tys, _) = let val p = Free ("p", @{typ perm}) val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) val perm_bn = lookup perm_bn_map bn_trm val lhs = perm_bn $ p $ list_comb (constr, args) val rhs = list_comb (constr, map_index (mk_perm_bn_eq_rhs p perm_bn_map bn_args) args) in HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) endfun mk_perm_bn_eqs lthy perm_bn_map cns_info (bn_trm, bn_n, bn_argss) = let val nth_cns_info = nth cns_info bn_n in map2 (mk_perm_bn_eq lthy bn_trm perm_bn_map) bn_argss nth_cns_info endfun define_raw_bn_perms raw_tys bn_info cns_info cns_thms size_thms lthy = if null bn_info then ([], [], lthy) else let val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info) val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns val perm_bn_names = map (prefix "permute_") bn_names val perm_bn_arg_tys = map (nth raw_tys) bn_tys val perm_bn_tys = map (fn ty => @{typ "perm"} --> ty --> ty) perm_bn_arg_tys val perm_bn_frees = map Free (perm_bn_names ~~ perm_bn_tys) val perm_bn_map = bns ~~ perm_bn_frees val perm_bn_eqs = map (mk_perm_bn_eqs lthy perm_bn_map cns_info) bn_info val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) perm_bn_names val all_fun_eqs = map (pair Attrib.empty_binding) (flat perm_bn_eqs) val prod_simps = @{thms prod.inject HOL.simp_thms} val (_, lthy') = Function.add_function all_fun_names all_fun_eqs Function_Common.default_config (pat_completeness_simp (prod_simps @ cns_thms)) lthy val (info, lthy'') = prove_termination_fun size_thms (Local_Theory.restore lthy') val {fs, simps, ...} = info; val morphism = ProofContext.export_morphism lthy'' lthy val simps_exp = map (Morphism.thm morphism) (the simps) in (fs, simps_exp, lthy'') end(** equivarance proofs **)val eqvt_apply_sym = @{thm eqvt_apply[symmetric]}fun subproof_tac const_names simps = SUBPROOF (fn {prems, context, ...} => HEADGOAL (simp_tac (HOL_basic_ss addsimps simps) THEN' Nominal_Permeq.eqvt_tac context [] const_names THEN' simp_tac (HOL_basic_ss addsimps (prems @ [eqvt_apply_sym]))))fun prove_eqvt_tac insts ind_thms const_names simps ctxt = HEADGOAL (Object_Logic.full_atomize_tac THEN' (DETERM o (InductTacs.induct_rules_tac ctxt insts ind_thms)) THEN_ALL_NEW subproof_tac const_names simps ctxt)fun mk_eqvt_goal pi const arg = let val lhs = mk_perm pi (const $ arg) val rhs = const $ (mk_perm pi arg) in HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) endfun raw_prove_eqvt consts ind_thms simps ctxt = if null consts then [] else let val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt val p = Free (p, @{typ perm}) val arg_tys = consts |> map fastype_of |> map domain_type val (arg_names, ctxt'') = Variable.variant_fixes (Datatype_Prop.make_tnames arg_tys) ctxt' val args = map Free (arg_names ~~ arg_tys) val goals = map2 (mk_eqvt_goal p) consts args val insts = map (single o SOME) arg_names val const_names = map (fst o dest_Const) consts in Goal.prove_multi ctxt'' [] [] goals (fn {context, ...} => prove_eqvt_tac insts ind_thms const_names simps context) |> ProofContext.export ctxt'' ctxt end(*** raw permutation functions ***)(** proves the two pt-type class properties **)fun prove_permute_zero induct perm_defs perm_fns lthy = let val perm_types = map (body_type o fastype_of) perm_fns val perm_indnames = Datatype_Prop.make_tnames perm_types fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T)) val goals = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames))) val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs) val tac = (Datatype_Aux.indtac induct perm_indnames THEN_ALL_NEW asm_simp_tac simps) 1 in Goal.prove lthy perm_indnames [] goals (K tac) |> Datatype_Aux.split_conj_thm endfun prove_permute_plus induct perm_defs perm_fns lthy = let val p = Free ("p", @{typ perm}) val q = Free ("q", @{typ perm}) val perm_types = map (body_type o fastype_of) perm_fns val perm_indnames = Datatype_Prop.make_tnames perm_types fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq (perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T))) val goals = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames))) val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs) val tac = (Datatype_Aux.indtac induct perm_indnames THEN_ALL_NEW asm_simp_tac simps) 1 in Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac) |> Datatype_Aux.split_conj_thm endfun mk_perm_eq ty_perm_assoc cnstr = let fun lookup_perm p (ty, arg) = case (AList.lookup (op=) ty_perm_assoc ty) of SOME perm => perm $ p $ arg | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg val p = Free ("p", @{typ perm}) val (arg_tys, ty) = fastype_of cnstr |> strip_type val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys) val args = map Free (arg_names ~~ arg_tys) val lhs = lookup_perm p (ty, list_comb (cnstr, args)) val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args)) val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) in (Attrib.empty_binding, eq) endfun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy = let val perm_fn_names = full_ty_names |> map Long_Name.base_name |> map (prefix "permute_") val perm_fn_types = map perm_ty tys val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types) val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs fun tac _ (_, _, simps) = Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps) fun morphism phi (fvs, dfs, simps) = (map (Morphism.term phi) fvs, map (Morphism.thm phi) dfs, map (Morphism.thm phi) simps); val ((perm_funs, perm_eq_thms), lthy') = lthy |> Local_Theory.exit_global |> Class.instantiation (full_ty_names, tvs, @{sort pt}) |> Primrec.add_primrec perm_fn_binds perm_eqs val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy' val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy' in lthy' |> Class.prove_instantiation_exit_result morphism tac (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms) ||> Named_Target.theory_init endend (* structure *)