Quot/QuotScript.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Wed, 13 Jan 2010 16:23:32 +0100
changeset 865 5c6d76c3ba5c
parent 841 8e44ce29f974
child 891 7bac7dffadeb
permissions -rw-r--r--
Put relation_error as a separate function.

theory QuotScript
imports Plain ATP_Linkup Predicate
begin

definition
  "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"

definition
  "reflp E \<equiv> \<forall>x. E x x"

definition
  "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"

definition
  "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"

lemma equivp_reflp_symp_transp:
  shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
  unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
  by (blast)

lemma equivp_reflp:
  shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
  by (simp only: equivp_reflp_symp_transp reflp_def)

lemma equivp_symp:
  shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)"
  by (metis equivp_reflp_symp_transp symp_def)

lemma equivp_transp:
  shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
  by (metis equivp_reflp_symp_transp transp_def)

lemma equivpI:
  assumes "reflp R" "symp R" "transp R"
  shows "equivp R"
  using assms by (simp add: equivp_reflp_symp_transp)

definition
  "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"

lemma equivp_IMP_part_equivp:
  assumes a: "equivp E"
  shows "part_equivp E"
  using a unfolding equivp_def part_equivp_def
  by auto


abbreviation 
  rel_conj (infixr "OOO" 75)
where
  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"

definition
  "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
                        (\<forall>a. E (Rep a) (Rep a)) \<and>
                        (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"

(* TEST
lemma 
  fixes Abs1::"'b \<Rightarrow> 'c"
  and   Abs2::"'a \<Rightarrow> 'b"
  and   Rep1::"'c \<Rightarrow> 'b"
  and   Rep2::"'b \<Rightarrow> 'a"
  assumes "Quotient R1 Abs1 Rep1"
  and     "Quotient R2 Abs2 Rep2"
  shows "Quotient (f R2 R1) (Abs1 \<circ> Abs2) (Rep2 \<circ> Rep1)"
*)

lemma Quotient_abs_rep:
  assumes a: "Quotient E Abs Rep"
  shows "Abs (Rep a) \<equiv> a"
  using a unfolding Quotient_def
  by simp

lemma Quotient_rep_reflp:
  assumes a: "Quotient E Abs Rep"
  shows "E (Rep a) (Rep a)"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rel:
  assumes a: "Quotient E Abs Rep"
  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rel_rep:
  assumes a: "Quotient R Abs Rep"
  shows "R (Rep a) (Rep b) \<equiv> (a = b)"
  apply (rule eq_reflection)
  using a unfolding Quotient_def
  by metis

lemma Quotient_rep_abs:
  assumes a: "Quotient R Abs Rep"
  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rel_abs:
  assumes a: "Quotient E Abs Rep"
  shows "E r s \<Longrightarrow> Abs r = Abs s"
  using a unfolding Quotient_def
  by blast

lemma identity_equivp:
  shows "equivp (op =)"
  unfolding equivp_def
  by auto

lemma identity_quotient:
  shows "Quotient (op =) id id"
  unfolding Quotient_def id_def
  by blast

lemma Quotient_symp:
  assumes a: "Quotient E Abs Rep"
  shows "symp E"
  using a unfolding Quotient_def symp_def
  by metis

lemma Quotient_transp:
  assumes a: "Quotient E Abs Rep"
  shows "transp E"
  using a unfolding Quotient_def transp_def
  by metis

fun
  fun_map
where
  "fun_map f g h x = g (h (f x))"

abbreviation
  fun_map_syn (infixr "--->" 55)
where
  "f ---> g \<equiv> fun_map f g"

lemma fun_map_id:
  shows "(id ---> id) = id"
  by (simp add: expand_fun_eq id_def)


fun
  fun_rel
where
  "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"

abbreviation
  fun_rel_syn (infixr "===>" 55)
where
  "E1 ===> E2 \<equiv> fun_rel E1 E2"

lemma fun_rel_eq:
  "(op =) ===> (op =) \<equiv> (op =)"
  by (rule eq_reflection) (simp add: expand_fun_eq)

lemma fun_quotient:
  assumes q1: "Quotient R1 abs1 rep1"
  and     q2: "Quotient R2 abs2 rep2"
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
    apply(simp add: expand_fun_eq)
    using q1 q2
    apply(simp add: Quotient_def)
    done
  moreover
  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
    apply(auto)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    done
  moreover
  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
    apply(auto simp add: expand_fun_eq)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    done
  ultimately
  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
    unfolding Quotient_def by blast
qed

definition
  Respects
where
  "Respects R x \<equiv> (R x x)"

lemma in_respects:
  shows "(x \<in> Respects R) = R x x"
  unfolding mem_def Respects_def by simp

lemma equals_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "R xa xb" "R ya yb"
  shows "R xa ya = R xb yb"
  using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
  using a by blast

lemma lambda_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
  unfolding expand_fun_eq
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
  by simp

lemma lambda_prs1:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
  unfolding expand_fun_eq
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
  by simp

lemma rep_abs_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "R x1 x2"
  shows "R x1 (Rep (Abs x2))"
  using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])

lemma rep_abs_rsp_left:
  assumes q: "Quotient R Abs Rep"
  and     a: "R x1 x2"
  shows "R (Rep (Abs x1)) x2"
using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])

(* In the following theorem R1 can be instantiated with anything,
   but we know some of the types of the Rep and Abs functions;
   so by solving Quotient assumptions we can get a unique R1 that
   will be provable; which is why we need to use apply_rsp and
   not the primed version *)
lemma apply_rsp:
  fixes f g::"'a \<Rightarrow> 'c"
  assumes q: "Quotient R1 Abs1 Rep1"
  and     a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
  using a by simp

lemma apply_rsp':
  assumes a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
  using a by simp

(* Set of lemmas for regularisation of ball and bex *)

lemma ball_reg_eqv:
  fixes P :: "'a \<Rightarrow> bool"
  assumes a: "equivp R"
  shows "Ball (Respects R) P = (All P)"
  by (metis equivp_def in_respects a)

lemma bex_reg_eqv:
  fixes P :: "'a \<Rightarrow> bool"
  assumes a: "equivp R"
  shows "Bex (Respects R) P = (Ex P)"
  by (metis equivp_def in_respects a)

lemma ball_reg_right:
  assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
  shows "All P \<longrightarrow> Ball R Q"
  by (metis COMBC_def Collect_def Collect_mem_eq a)

lemma bex_reg_left:
  assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
  shows "Bex R Q \<longrightarrow> Ex P"
  by (metis COMBC_def Collect_def Collect_mem_eq a)

lemma ball_reg_left:
  assumes a: "equivp R"
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
  by (metis equivp_reflp in_respects a)

lemma bex_reg_right:
  assumes a: "equivp R"
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
  by (metis equivp_reflp in_respects a)

lemma ball_reg_eqv_range:
  fixes P::"'a \<Rightarrow> bool"
  and x::"'a"
  assumes a: "equivp R2"
  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
  apply(rule iffI)
  apply(rule allI)
  apply(drule_tac x="\<lambda>y. f x" in bspec)
  apply(simp add: in_respects)
  apply(rule impI)
  using a equivp_reflp_symp_transp[of "R2"]
  apply(simp add: reflp_def)
  apply(simp)
  apply(simp)
  done

lemma bex_reg_eqv_range:
  fixes P::"'a \<Rightarrow> bool"
  and x::"'a"
  assumes a: "equivp R2"
  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
  apply(auto)
  apply(rule_tac x="\<lambda>y. f x" in bexI)
  apply(simp)
  apply(simp add: Respects_def in_respects)
  apply(rule impI)
  using a equivp_reflp_symp_transp[of "R2"]
  apply(simp add: reflp_def)
  done

lemma all_reg:
  assumes a: "!x :: 'a. (P x --> Q x)"
  and     b: "All P"
  shows "All Q"
  using a b by (metis)

lemma ex_reg:
  assumes a: "!x :: 'a. (P x --> Q x)"
  and     b: "Ex P"
  shows "Ex Q"
  using a b by (metis)

lemma ball_reg:
  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
  and     b: "Ball R P"
  shows "Ball R Q"
  using a b by (metis COMBC_def Collect_def Collect_mem_eq)

lemma bex_reg:
  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
  and     b: "Bex R P"
  shows "Bex R Q"
  using a b by (metis COMBC_def Collect_def Collect_mem_eq)

lemma ball_all_comm:
  "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
  by auto

lemma bex_ex_comm:
  "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
  by auto

(* Bounded abstraction *)
definition
  Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
where
  "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)"

(* 3 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "Ball (Respects R) f = Ball (Respects R) g"
  using a by (simp add: Ball_def in_respects)

lemma bex_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "(Bex (Respects R) f = Bex (Respects R) g)"
  using a by (simp add: Bex_def in_respects)

lemma babs_rsp:
  assumes q: "Quotient R1 Abs1 Rep1"
  and     a: "(R1 ===> R2) f g"
  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
  apply (auto simp add: Babs_def)
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
  using a apply (simp add: Babs_def)
  apply (simp add: in_respects)
  using Quotient_rel[OF q]
  by metis

lemma babs_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \<equiv> f"
  apply(rule eq_reflection)
  apply(rule ext)
  apply simp
  apply (subgoal_tac "Rep1 x \<in> Respects R1")
  apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
  apply (simp add: in_respects Quotient_rel_rep[OF q1])
  done

lemma babs_simp:
  assumes q: "Quotient R1 Abs Rep"
  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
  apply(rule iffI)
  apply(simp_all only: babs_rsp[OF q])
  apply(auto simp add: Babs_def)
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
  apply(metis Babs_def)
  apply (simp add: in_respects)
  using Quotient_rel[OF q]
  by metis

(* If a user proves that a particular functional relation 
   is an equivalence this may be useful in regularising *)
lemma babs_reg_eqv:
  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
  by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)

(* 2 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
  assumes a: "Quotient R absf repf"
  shows "Ball (Respects R) ((absf ---> id) f) = All f"
  using a unfolding Quotient_def
  by (metis in_respects fun_map.simps id_apply)

lemma ex_prs:
  assumes a: "Quotient R absf repf"
  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
  using a unfolding Quotient_def
  by (metis COMBC_def Collect_def Collect_mem_eq in_respects fun_map.simps id_apply)

lemma fun_rel_id:
  assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
  shows "(R1 ===> R2) f g"
  using a by simp

lemma fun_rel_id_asm:
  assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
  shows "A \<longrightarrow> (R1 ===> R2) f g"
  using a by auto

lemma quot_rel_rsp:
  assumes a: "Quotient R Abs Rep"
  shows "(R ===> R ===> op =) R R"
  apply(rule fun_rel_id)+
  apply(rule equals_rsp[OF a])
  apply(assumption)+
  done

lemma o_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     q3: "Quotient R3 Abs3 Rep3"
  shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
  unfolding o_def expand_fun_eq by simp

lemma o_rsp:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     q3: "Quotient R3 Abs3 Rep3"
  and     a1: "(R2 ===> R3) f1 f2"
  and     a2: "(R1 ===> R2) g1 g2"
  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
  using a1 a2 unfolding o_def expand_fun_eq
  by (auto)

lemma cond_prs:
  assumes a: "Quotient R absf repf"
  shows "absf (if a then repf b else repf c) = (if a then b else c)"
  using a unfolding Quotient_def by auto

lemma if_prs:
  assumes q: "Quotient R Abs Rep"
  shows "Abs (If a (Rep b) (Rep c)) = If a b c"
using Quotient_abs_rep[OF q] by auto

(* q not used *)
lemma if_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
  shows "R (If a1 b1 c1) (If a2 b2 c2)"
using a by auto

lemma let_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto

lemma let_rsp:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     a1: "(R1 ===> R2) f g"
  and     a2: "R1 x y"
  shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
  using apply_rsp[OF q1 a1] a2 by auto




(******************************************)
(* REST OF THE FILE IS UNUSED (until now) *)
(******************************************)

lemma in_fun:
  shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
  by (simp add: mem_def)

lemma respects_thm:
  shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
  unfolding Respects_def
  by (simp add: expand_fun_eq)

lemma respects_rep_abs:
  assumes a: "Quotient R1 Abs1 Rep1"
  and     b: "Respects (R1 ===> R2) f"
  and     c: "R1 x x"
  shows "R2 (f (Rep1 (Abs1 x))) (f x)"
  using a b[simplified respects_thm] c unfolding Quotient_def
  by blast

lemma respects_mp:
  assumes a: "Respects (R1 ===> R2) f"
  and     b: "R1 x y"
  shows "R2 (f x) (f y)"
  using a b unfolding Respects_def
  by simp

lemma respects_o:
  assumes a: "Respects (R2 ===> R3) f"
  and     b: "Respects (R1 ===> R2) g"
  shows "Respects (R1 ===> R3) (f o g)"
  using a b unfolding Respects_def
  by simp

lemma abs_o_rep:
  assumes a: "Quotient r absf repf"
  shows "absf o repf = id"
  apply(rule ext)
  apply(simp add: Quotient_abs_rep[OF a])
  done

lemma eq_comp_r: "op = OO R OO op = \<equiv> R"
  apply (rule eq_reflection)
  apply (rule ext)+
  apply auto
  done

lemma fun_rel_eq_rel:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
                             \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
  using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
  by blast

lemma let_babs:
  "v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
  by (simp add: Babs_def)

lemma fun_rel_equals:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     r1: "Respects (R1 ===> R2) f"
  and     r2: "Respects (R1 ===> R2) g" 
  shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
  apply(rule_tac iffI)
  using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
  apply(metis apply_rsp')
  using r1 unfolding Respects_def expand_fun_eq
  apply(simp (no_asm_use))
  apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
  done

(* ask Peter: fun_rel_IMP used twice *) 
lemma fun_rel_IMP2:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     r1: "Respects (R1 ===> R2) f"
  and     r2: "Respects (R1 ===> R2) g" 
  and     a:  "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
  shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
  using q1 q2 r1 r2 a
  by (simp add: fun_rel_equals)

lemma lambda_rep_abs_rsp:
  assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
  and     r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
  shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
  using r1 r2 by auto

(* ask peter what are literal_case *)
(* literal_case_PRS *)
(* literal_case_RSP *)
(* Cez: !f x. literal_case f x = f x *)

(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
lemma id_prs:
  assumes q: "Quotient R Abs Rep"
  shows "Abs (id (Rep e)) = id e"
  using Quotient_abs_rep[OF q] by auto

lemma id_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "R e1 e2"
  shows "R (id e1) (id e2)"
  using a by auto

end