theory TypeSchemes1
imports "../Nominal2"
begin
section {*** Type Schemes defined as two separate nominal datatypes ***}
atom_decl name
nominal_datatype ty =
Var "name"
| Fun "ty" "ty" ("_ \<rightarrow> _")
nominal_datatype tys =
All xs::"name fset" ty::"ty" binds (set+) xs in ty ("All [_]._")
thm tys.distinct
thm tys.induct tys.strong_induct
thm tys.exhaust tys.strong_exhaust
thm tys.fv_defs
thm tys.bn_defs
thm tys.perm_simps
thm tys.eq_iff
thm tys.fv_bn_eqvt
thm tys.size_eqvt
thm tys.supports
thm tys.supp
thm tys.fresh
subsection {* Substitution function for types and type schemes *}
type_synonym
Subst = "(name \<times> ty) list"
fun
lookup :: "Subst \<Rightarrow> name \<Rightarrow> ty"
where
"lookup [] Y = Var Y"
| "lookup ((X, T) # Ts) Y = (if X = Y then T else lookup Ts Y)"
lemma lookup_eqvt[eqvt]:
shows "(p \<bullet> lookup Ts T) = lookup (p \<bullet> Ts) (p \<bullet> T)"
apply(induct Ts T rule: lookup.induct)
apply(simp_all)
done
nominal_primrec
subst :: "Subst \<Rightarrow> ty \<Rightarrow> ty" ("_<_>" [100,60] 120)
where
"\<theta><Var X> = lookup \<theta> X"
| "\<theta><T1 \<rightarrow> T2> = (\<theta><T1>) \<rightarrow> (\<theta><T2>)"
unfolding eqvt_def subst_graph_def
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(case_tac x)
apply(rule_tac y="b" in ty.exhaust)
apply(blast)
apply(blast)
apply(simp_all)
done
termination (eqvt)
by lexicographic_order
lemma supp_fun_app_eqvt:
assumes e: "eqvt f"
shows "supp (f a b) \<subseteq> supp a \<union> supp b"
using supp_fun_app_eqvt[OF e] supp_fun_app
by blast
lemma supp_subst:
"supp (subst \<theta> t) \<subseteq> supp \<theta> \<union> supp t"
apply (rule supp_fun_app_eqvt)
unfolding eqvt_def
by (simp add: permute_fun_def subst.eqvt)
nominal_primrec
substs :: "(name \<times> ty) list \<Rightarrow> tys \<Rightarrow> tys" ("_<_>" [100,60] 120)
where
"fset (map_fset atom Xs) \<sharp>* \<theta> \<Longrightarrow> \<theta><All [Xs].T> = All [Xs].(\<theta><T>)"
unfolding eqvt_def substs_graph_def
apply (rule, perm_simp, rule)
apply auto[2]
apply (rule_tac y="b" and c="a" in tys.strong_exhaust)
apply auto[1]
apply(simp)
apply(erule conjE)
apply (erule Abs_res_fcb)
apply (simp add: Abs_fresh_iff)
apply(simp add: fresh_def)
apply(simp add: supp_Abs)
apply(rule impI)
apply(subgoal_tac "x \<notin> supp \<theta>")
prefer 2
apply(auto simp add: fresh_star_def fresh_def)[1]
apply(subgoal_tac "x \<in> supp T")
using supp_subst
apply(blast)
using supp_subst
apply(blast)
apply clarify
apply (simp add: subst.eqvt)
apply (subst Abs_eq_iff)
apply (rule_tac x="0::perm" in exI)
apply (subgoal_tac "p \<bullet> \<theta>' = \<theta>'")
apply (simp add: alphas fresh_star_zero)
apply (subgoal_tac "\<And>x. x \<in> supp (subst \<theta>' (p \<bullet> T)) \<Longrightarrow> x \<in> p \<bullet> atom ` fset Xs \<longleftrightarrow> x \<in> atom ` fset Xsa")
apply blast
apply (subgoal_tac "x \<in> supp(p \<bullet> \<theta>', p \<bullet> T)")
apply (simp add: supp_Pair eqvts eqvts_raw)
apply auto[1]
apply (subgoal_tac "(atom ` fset (p \<bullet> Xs)) \<sharp>* \<theta>'")
apply (simp add: fresh_star_def fresh_def)
apply(drule_tac p1="p" in iffD2[OF fresh_star_permute_iff])
apply (simp add: eqvts eqvts_raw)
apply (simp add: fresh_star_def fresh_def)
apply (drule subsetD[OF supp_subst])
apply (simp add: supp_Pair)
apply (rule perm_supp_eq)
apply (simp add: fresh_def fresh_star_def)
apply blast
done
text {* Some Tests about Alpha-Equality *}
lemma
shows "All [{|a, b|}].((Var a) \<rightarrow> (Var b)) = All [{|b, a|}]. ((Var a) \<rightarrow> (Var b))"
apply(simp add: Abs_eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas fresh_star_def ty.supp supp_at_base)
done
lemma
shows "All [{|a, b|}].((Var a) \<rightarrow> (Var b)) = All [{|a, b|}].((Var b) \<rightarrow> (Var a))"
apply(simp add: Abs_eq_iff)
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
apply(simp add: alphas fresh_star_def supp_at_base ty.supp)
done
lemma
shows "All [{|a, b, c|}].((Var a) \<rightarrow> (Var b)) = All [{|a, b|}].((Var a) \<rightarrow> (Var b))"
apply(simp add: Abs_eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas fresh_star_def ty.supp supp_at_base)
done
lemma
assumes a: "a \<noteq> b"
shows "\<not>(All [{|a, b|}].((Var a) \<rightarrow> (Var b)) = All [{|c|}].((Var c) \<rightarrow> (Var c)))"
using a
apply(simp add: Abs_eq_iff)
apply(clarify)
apply(simp add: alphas fresh_star_def ty.supp supp_at_base)
apply auto
done
text {* HERE *}
fun
compose::"Subst \<Rightarrow> Subst \<Rightarrow> Subst" ("_ \<circ> _" [100,100] 100)
where
"\<theta>\<^isub>1 \<circ> [] = \<theta>\<^isub>1"
| "\<theta>\<^isub>1 \<circ> ((X,T)#\<theta>\<^isub>2) = (X,\<theta>\<^isub>1<T>)#(\<theta>\<^isub>1 \<circ> \<theta>\<^isub>2)"
lemma compose_eqvt:
fixes \<theta>1 \<theta>2::"Subst"
shows "(p \<bullet> (\<theta>1 \<circ> \<theta>2)) = ((p \<bullet> \<theta>1) \<circ> (p \<bullet> \<theta>2))"
apply(induct \<theta>2)
apply(auto simp add: subst.eqvt)
done
lemma compose_ty:
fixes \<theta>1 :: "Subst"
and \<theta>2 :: "Subst"
and T :: "ty"
shows "\<theta>1<\<theta>2<T>> = (\<theta>1\<circ>\<theta>2)<T>"
proof (induct T rule: ty.induct)
case (Var X)
have "\<theta>1<lookup \<theta>2 X> = lookup (\<theta>1\<circ>\<theta>2) X"
by (induct \<theta>2) (auto)
then show ?case by simp
next
case (Fun T1 T2)
then show ?case by simp
qed
fun
dom :: "Subst \<Rightarrow> name fset"
where
"dom [] = {||}"
| "dom ((X,T)#\<theta>) = {|X|} |\<union>| dom \<theta>"
lemma dom_eqvt[eqvt]:
shows "(p \<bullet> dom \<theta>) = dom (p \<bullet> \<theta>)"
apply(induct \<theta> rule: dom.induct)
apply(simp_all)
done
nominal_primrec
ftv :: "ty \<Rightarrow> name fset"
where
"ftv (Var X) = {|X|}"
| "ftv (T1 \<rightarrow> T2) = (ftv T1) |\<union>| (ftv T2)"
unfolding eqvt_def ftv_graph_def
apply (rule, perm_simp, rule)
apply(auto)[2]
apply(rule_tac y="x" in ty.exhaust)
apply(blast)
apply(blast)
apply(simp_all)
done
termination (eqvt)
by lexicographic_order
lemma s1:
fixes T::"ty"
shows "(X \<leftrightarrow> Y) \<bullet> T = [(X, Var Y),(Y, Var X)]<T>"
apply(induct T rule: ty.induct)
apply(simp_all)
done
lemma s2:
fixes T::"ty"
shows "[]<T> = T"
apply(induct T rule: ty.induct)
apply(simp_all)
done
lemma perm_struct_induct_name[case_names pure zero swap]:
assumes pure: "supp p \<subseteq> atom ` (UNIV::name set)"
and zero: "P 0"
and swap: "\<And>p a b::name. \<lbrakk>P p; a \<noteq> b\<rbrakk> \<Longrightarrow> P ((a \<leftrightarrow> b) + p)"
shows "P p"
apply(rule_tac S="supp p \<inter> atom ` (UNIV::name set)" in perm_struct_induct)
using pure
apply(auto)[1]
apply(rule zero)
apply(auto)
apply(simp add: flip_def[symmetric])
apply(rule swap)
apply(auto)
done
lemma s3:
fixes T::"ty"
assumes "supp p \<subseteq> atom ` (UNIV::name set)"
shows "\<exists>\<theta>. p \<bullet> T = \<theta><T>"
apply(induct p rule: perm_struct_induct_name)
apply(rule assms)
apply(simp)
apply(rule_tac x="[]" in exI)
apply(simp add: s2)
apply(clarify)
apply(simp)
apply(rule_tac x="[(a, Var b),(b, Var a)] \<circ> \<theta>" in exI)
apply(simp add: compose_ty[symmetric])
apply(simp add: s1)
done
lemma s4:
fixes x::"'a::fs"
assumes "supp x \<subseteq> atom ` (UNIV::name set)"
shows "\<exists>q. p \<bullet> x = q \<bullet> x \<and> supp q \<subseteq> atom ` (UNIV::name set)"
apply(induct p rule: perm_simple_struct_induct)
apply(rule_tac x="0" in exI)
apply(auto)[1]
apply(simp add: supp_zero_perm)
apply(auto)[1]
apply(case_tac "supp (a \<rightleftharpoons> b) \<subseteq> range atom")
apply(rule_tac x="(a \<rightleftharpoons> b) + q" in exI)
apply(simp)
apply(rule subset_trans)
apply(rule supp_plus_perm)
apply(simp)
apply(rule_tac x="q" in exI)
apply(simp)
apply(rule swap_fresh_fresh)
apply(simp add: fresh_permute_left)
apply(subst perm_supp_eq)
apply(simp add: supp_swap)
apply(simp add: supp_minus_perm)
apply(simp add: fresh_star_def fresh_def)
apply(simp add: supp_atom)
apply(auto)[1]
apply (metis atom_eqvt image_iff rangeI subsetD swap_atom_simps(2))
apply(simp add: supp_swap)
using assms
apply(simp add: fresh_def)
apply(auto)[1]
apply (metis atom_eqvt image_iff rangeI subsetD swap_atom_simps(2))
apply(simp add: fresh_permute_left)
apply(subst perm_supp_eq)
apply(simp add: supp_swap)
apply(simp add: supp_minus_perm)
apply(simp add: fresh_star_def fresh_def)
apply(simp add: supp_atom)
apply(auto)[1]
apply (metis atom_eqvt image_iff rangeI subsetD swap_atom_simps(2))
apply(simp add: supp_swap)
using assms
apply(simp add: fresh_def)
apply(auto)[1]
apply (metis atom_eqvt image_iff rangeI subsetD swap_atom_simps(2))
done
lemma s5:
fixes T::"ty"
shows "supp T \<subseteq> atom ` (UNIV::name set)"
apply(induct T rule: ty.induct)
apply(auto simp add: ty.supp supp_at_base)
done
function
generalises :: "ty \<Rightarrow> tys \<Rightarrow> bool" ("_ \<prec>\<prec> _")
where
"T \<prec>\<prec> All [Xs].T' \<longleftrightarrow> (\<exists>\<theta>. \<theta><T'> = T)"
apply auto[1]
apply (rule_tac y="b" in tys.exhaust)
apply auto[1]
apply(simp)
apply(clarify)
apply(rule iffI)
apply(clarify)
apply(drule sym)
apply(simp add: Abs_eq_iff2)
apply(simp add: alphas)
apply(clarify)
using s4[OF s5]
apply -
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="T'a" in meta_spec)
apply(clarify)
apply(simp)
using s3
apply -
apply(drule_tac x="q" in meta_spec)
apply(drule_tac x="T'a" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply(clarify)
apply(simp)
apply(rule_tac x="\<theta> \<circ> \<theta>'" in exI)
apply(simp add: compose_ty)
apply(auto)
apply(simp add: Abs_eq_iff2)
apply(simp add: alphas)
apply(clarify)
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="T'" in meta_spec)
apply(clarify)
apply(simp)
apply(drule_tac x="q" in meta_spec)
apply(drule_tac x="T'" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply(clarify)
apply(simp)
apply(rule_tac x="\<theta> \<circ> \<theta>'" in exI)
apply(simp add: compose_ty)
done
end