Attic/Parser.thy
author Christian Urban <urbanc@in.tum.de>
Fri, 14 May 2010 17:58:26 +0100
changeset 2137 5b007ac41b29
parent 2021 Nominal/Parser.thy@f761f83e541a
permissions -rw-r--r--
moved old parser and fv into attic

theory Parser
imports "../Nominal-General/Nominal2_Atoms"
        "../Nominal-General/Nominal2_Eqvt"
        "../Nominal-General/Nominal2_Supp"
        "Perm" "Equivp" "Rsp" "Lift" "Fv"
begin

section{* Interface for nominal_datatype *}

text {*

Nominal-Datatype-part:


1nd Arg: (string list * binding * mixfix * (binding * typ list * mixfix) list) list
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
               type(s) to be defined             constructors list
               (ty args, name, syn)              (name, typs, syn)

Binder-Function-part:

2rd Arg: (binding * typ option * mixfix) list 
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^    
            binding function(s)           
              to be defined               
            (name, type, syn)             

3th Arg:  term list 
          ^^^^^^^^^
          the equations of the binding functions
          (Trueprop equations)
*}

ML {*

*}

text {*****************************************************}
ML {* 
(* nominal datatype parser *)
local
  structure P = OuterParse

  fun tuple ((x, y, z), u) = (x, y, z, u)
  fun tswap (((x, y), z), u) = (x, y, u, z)
in

val _ = OuterKeyword.keyword "bind"
val anno_typ = Scan.option (P.name --| P.$$$ "::") -- P.typ

(* binding specification *)
(* maybe use and_list *)
val bind_parser = 
  P.enum "," ((P.$$$ "bind" |-- P.term) -- (P.$$$ "in" |-- P.name) >> swap)

val constr_parser =
  P.binding -- Scan.repeat anno_typ

(* datatype parser *)
val dt_parser =
  (P.type_args -- P.binding -- P.opt_mixfix >> P.triple1) -- 
    (P.$$$ "=" |-- P.enum1 "|" (constr_parser -- bind_parser -- P.opt_mixfix >> tswap)) >> tuple

(* function equation parser *)
val fun_parser = 
  Scan.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([],[])

(* main parser *)
val main_parser =
  (P.and_list1 dt_parser) -- fun_parser >> P.triple2

end
*}

(* adds "_raw" to the end of constants and types *)
ML {*
fun add_raw s = s ^ "_raw"
fun add_raws ss = map add_raw ss
fun raw_bind bn = Binding.suffix_name "_raw" bn

fun replace_str ss s = 
  case (AList.lookup (op=) ss s) of 
     SOME s' => s'
   | NONE => s

fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts)
  | replace_typ ty_ss T = T  

fun raw_dts ty_ss dts =
let

  fun raw_dts_aux1 (bind, tys, mx) =
    (raw_bind bind, map (replace_typ ty_ss) tys, mx)

  fun raw_dts_aux2 (ty_args, bind, mx, constrs) =
    (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs)
in
  map raw_dts_aux2 dts
end

fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T)
  | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T)
  | replace_aterm trm_ss trm = trm

fun replace_term trm_ss ty_ss trm =
  trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) 
*}

ML {*
fun get_cnstrs dts =
  map (fn (_, _, _, constrs) => constrs) dts

fun get_typed_cnstrs dts =
  flat (map (fn (_, bn, _, constrs) => 
   (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts)

fun get_cnstr_strs dts =
  map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts))

fun get_bn_fun_strs bn_funs =
  map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs
*}

ML {*
fun rawify_dts dt_names dts dts_env =
let
  val raw_dts = raw_dts dts_env dts
  val raw_dt_names = add_raws dt_names
in
  (raw_dt_names, raw_dts)
end 
*}

ML {*
fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs =
let
  val bn_funs' = map (fn (bn, ty, mx) => 
    (raw_bind bn, replace_typ dts_env ty, mx)) bn_funs
  
  val bn_eqs' = map (fn (attr, trm) => 
    (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs
in
  (bn_funs', bn_eqs') 
end 
*}

ML {*
fun apfst3 f (a, b, c) = (f a, b, c)
*}

ML {* 
fun rawify_binds dts_env cnstrs_env bn_fun_env binds =
  map (map (map (map (fn (opt_trm, i, j, aty) => 
    (Option.map (apfst (replace_term (cnstrs_env @ bn_fun_env) dts_env)) opt_trm, i, j, aty))))) binds
*}

ML {*
fun find [] _ = error ("cannot find element")
  | find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y
*}

ML {*
fun strip_bn_fun t =
  case t of
    Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
  | Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
  | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
      (i, NONE) :: strip_bn_fun y
  | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
      (i, NONE) :: strip_bn_fun y
  | Const (@{const_name bot}, _) => []
  | Const (@{const_name Nil}, _) => []
  | (f as Free _) $ Bound i => [(i, SOME f)]
  | _ => error ("Unsupported binding function: " ^ (PolyML.makestring t))
*}

ML {*
fun prep_bn dt_names dts eqs = 
let
  fun aux eq = 
  let
    val (lhs, rhs) = eq
      |> strip_qnt_body "all" 
      |> HOLogic.dest_Trueprop
      |> HOLogic.dest_eq
    val (bn_fun, [cnstr]) = strip_comb lhs
    val (_, ty) = dest_Free bn_fun
    val (ty_name, _) = dest_Type (domain_type ty)
    val dt_index = find_index (fn x => x = ty_name) dt_names
    val (cnstr_head, cnstr_args) = strip_comb cnstr
    val rhs_elements = strip_bn_fun rhs
    val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements
  in
    (dt_index, (bn_fun, (cnstr_head, included)))
  end 
  fun order dts i ts = 
  let
    val dt = nth dts i
    val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt)
    val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts
  in
    map (find ts') cts
  end

  val unordered = AList.group (op=) (map aux eqs)
  val unordered' = map (fn (x, y) =>  (x, AList.group (op=) y)) unordered
  val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered' 
in
  ordered
end
*}

ML {* 
fun add_primrec_wrapper funs eqs lthy = 
  if null funs then (([], []), lthy)
  else 
   let 
     val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs
     val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs
   in 
     Primrec.add_primrec funs' eqs' lthy
   end
*}

ML {*
fun add_datatype_wrapper dt_names dts =
let
  val conf = Datatype.default_config
in
  Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts)
end
*}

ML {* 
fun raw_nominal_decls dts bn_funs bn_eqs binds lthy =
let
  val thy = ProofContext.theory_of lthy
  val thy_name = Context.theory_name thy

  val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts
  val dt_full_names = map (Long_Name.qualify thy_name) dt_names 
  val dt_full_names' = add_raws dt_full_names
  val dts_env = dt_full_names ~~ dt_full_names'

  val cnstrs = get_cnstr_strs dts
  val cnstrs_ty = get_typed_cnstrs dts
  val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs
  val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name 
    (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty
  val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names'

  val bn_fun_strs = get_bn_fun_strs bn_funs
  val bn_fun_strs' = add_raws bn_fun_strs
  val bn_fun_env = bn_fun_strs ~~ bn_fun_strs'
  val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) 
    (bn_fun_strs ~~ bn_fun_strs')
  
  val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env

  val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs 
  
  val raw_binds = rawify_binds dts_env cnstrs_env bn_fun_full_env binds 

  val raw_bns = prep_bn dt_full_names' raw_dts (map snd raw_bn_eqs)

(*val _ = tracing (cat_lines (map PolyML.makestring raw_bns))*)
in
  lthy 
  |> add_datatype_wrapper raw_dt_names raw_dts 
  ||>> add_primrec_wrapper raw_bn_funs raw_bn_eqs
  ||>> pair raw_binds
  ||>> pair raw_bns
end
*}

lemma equivp_hack: "equivp x"
sorry
ML {*
fun equivp_hack ctxt rel =
let
  val thy = ProofContext.theory_of ctxt
  val ty = domain_type (fastype_of rel)
  val cty = ctyp_of thy ty
  val ct = cterm_of thy rel
in
  Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack}
end
*}

ML {* val cheat_alpha_eqvt = Unsynchronized.ref false *}
ML {* val cheat_equivp = Unsynchronized.ref false *}
ML {* val cheat_fv_rsp = Unsynchronized.ref false *}
ML {* val cheat_const_rsp = Unsynchronized.ref false *}

(* nominal_datatype2 does the following things in order:

Parser.thy/raw_nominal_decls
  1) define the raw datatype
  2) define the raw binding functions 

Perm.thy/define_raw_perms
  3) define permutations of the raw datatype and show that the raw type is 
     in the pt typeclass
      
Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
  4) define fv and fv_bn
  5) define alpha and alpha_bn

Perm.thy/distinct_rel
  6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...)             (Proof by cases; simp)

Tacs.thy/build_rel_inj
  6) prove alpha_eq_iff    (C1 x = C2 y \<leftrightarrow> P x y ...)
     (left-to-right by intro rule, right-to-left by cases; simp)
Equivp.thy/prove_eqvt
  7) prove bn_eqvt (common induction on the raw datatype)
  8) prove fv_eqvt (common induction on the raw datatype with help of above)
Rsp.thy/build_alpha_eqvts
  9) prove alpha_eqvt and alpha_bn_eqvt
     (common alpha-induction, unfolding alpha_gen, permute of #* and =)
Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
 10) prove that alpha and alpha_bn are equivalence relations
     (common induction and application of 'compose' lemmas)
Lift.thy/define_quotient_types
 11) define quotient types
Rsp.thy/build_fvbv_rsps
 12) prove bn respects     (common induction and simp with alpha_gen)
Rsp.thy/prove_const_rsp
 13) prove fv respects     (common induction and simp with alpha_gen)
 14) prove permute respects    (unfolds to alpha_eqvt)
Rsp.thy/prove_alpha_bn_rsp
 15) prove alpha_bn respects
     (alpha_induct then cases then sym and trans of the relations)
Rsp.thy/prove_alpha_alphabn
 16) show that alpha implies alpha_bn (by unduction, needed in following step)
Rsp.thy/prove_const_rsp
 17) prove respects for all datatype constructors
     (unfold eq_iff and alpha_gen; introduce zero permutations; simp)
Perm.thy/quotient_lift_consts_export
 18) define lifted constructors, fv, bn, alpha_bn, permutations
Perm.thy/define_lifted_perms
 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
Lift.thy/lift_thm
 20) lift permutation simplifications
 21) lift induction
 22) lift fv
 23) lift bn
 24) lift eq_iff
 25) lift alpha_distincts
 26) lift fv and bn eqvts
Equivp.thy/prove_supports
 27) prove that union of arguments supports constructors
Equivp.thy/prove_fs
 28) show that the lifted type is in fs typeclass     (* by q_induct, supports *)
Equivp.thy/supp_eq
 29) prove supp = fv
*)
ML {*
fun nominal_datatype2 dts bn_funs bn_eqs binds lthy =
let
  val _ = tracing "Raw declarations";
  val thy = ProofContext.theory_of lthy
  val thy_name = Context.theory_name thy
  val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_binds), raw_bns), lthy2) =
    raw_nominal_decls dts bn_funs bn_eqs binds lthy
  val morphism_2_1 = ProofContext.export_morphism lthy2 lthy
  fun export_fun f (t, l) = (f t, map (map (apsnd (Option.map f))) l);
  val raw_bns_exp = map (apsnd (map (export_fun (Morphism.term morphism_2_1)))) raw_bns;
  val bn_funs_decls = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) raw_bns_exp);
  val raw_bn_funs = map (Morphism.term morphism_2_1) raw_bn_funs_loc
  val raw_bn_eqs = ProofContext.export lthy2 lthy raw_bn_eqs_loc

  val dtinfo = Datatype.the_info (ProofContext.theory_of lthy2) (hd raw_dt_names);
  val {descr, sorts, ...} = dtinfo;
  fun nth_dtyp i = Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i);
  val raw_tys = map (fn (i, _) => nth_dtyp i) descr;
  val all_typs = map (fn i => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i)) (map fst descr)
  val all_full_tnames = map (fn (_, (n, _, _)) => n) descr;
  val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames;
  val rel_dtinfos = List.take (dtinfos, (length dts));
  val inject = flat (map #inject dtinfos);
  val distincts = flat (map #distinct dtinfos);
  val rel_distinct = map #distinct rel_dtinfos;
  val induct = #induct dtinfo;
  val exhausts = map #exhaust dtinfos;
  val _ = tracing "Defining permutations, fv and alpha";
  val ((raw_perm_def, raw_perm_simps, perms), lthy3) =
    Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy2;
  val raw_binds_flat = map (map flat) raw_binds;
  val ((((_, fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), lthy4) =
    define_fv_alpha_export dtinfo raw_binds_flat bn_funs_decls lthy3;
  val (fv, fvbn) = chop (length perms) fv_ts;

  val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts
  val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo);
  val bn_tys = map (domain_type o fastype_of) raw_bn_funs;
  val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys;
  val bns = raw_bn_funs ~~ bn_nos;
  val rel_dists = flat (map (distinct_rel lthy4 alpha_cases)
    (rel_distinct ~~ alpha_ts_nobn));
  val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases)
    ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn))
  val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4
  val _ = tracing "Proving equivariance";
  val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4
  val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5
  fun alpha_eqvt_tac' _ =
    if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
    else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1
  val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6;
  val _ = tracing "Proving equivalence";
  val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos;
  val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6;
  val alpha_equivp =
    if !cheat_equivp then map (equivp_hack lthy6) alpha_ts_nobn
    else build_equivps alpha_ts reflps alpha_induct
      inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6;
  val qty_binds = map (fn (_, b, _, _) => b) dts;
  val qty_names = map Name.of_binding qty_binds;
  val qty_full_names = map (Long_Name.qualify thy_name) qty_names
  val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6;
  val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
  val raw_consts =
    flat (map (fn (i, (_, _, l)) =>
      map (fn (cname, dts) =>
        Const (cname, map (Datatype_Aux.typ_of_dtyp descr sorts) dts --->
          Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i))) l) descr);
  val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7;
  val _ = tracing "Proving respects";
  val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8;
  val (bns_rsp_pre, lthy9) = fold_map (
    fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ =>
       resolve_tac bns_rsp_pre' 1)) bns lthy8;
  val bns_rsp = flat (map snd bns_rsp_pre);
  fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy
    else fvbv_rsp_tac alpha_induct fv_def lthy8 1;
  val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9;
  val (fv_rsp_pre, lthy10) = fold_map
    (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv]
    (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9;
  val fv_rsp = flat (map snd fv_rsp_pre);
  val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms
    (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10;
  val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11;
  val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
        (fn _ => asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1)) alpha_ts_bn lthy11
(*  val _ = map tracing (map PolyML.makestring alpha_bn_rsps);*)
  fun const_rsp_tac _ =
    if !cheat_const_rsp then Skip_Proof.cheat_tac thy
    else let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a
      in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end
  val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
    const_rsp_tac) raw_consts lthy11a
  val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn)
  val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12;
  val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts;
  val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs
  val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a;
  val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn
  val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b;
  val _ = tracing "Lifting permutations";
  val thy = Local_Theory.exit_global lthy12c;
  val perm_names = map (fn x => "permute_" ^ x) qty_names
  val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy;
  val lthy13 = Theory_Target.init NONE thy';
  val q_name = space_implode "_" qty_names;
  fun suffix_bind s = Binding.qualify true q_name (Binding.name s);
  val _ = tracing "Lifting induction";
  val constr_names = map (Long_Name.base_name o fst o dest_Const) consts;
  val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct);
  fun note_suffix s th ctxt =
    snd (Local_Theory.note ((suffix_bind s, []), th) ctxt);
  fun note_simp_suffix s th ctxt =
    snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt);
  val (_, lthy14) = Local_Theory.note ((suffix_bind "induct",
    [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13;
  val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct
  val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14;
  val q_perm = map (lift_thm qtys lthy14) raw_perm_def;
  val lthy15 = note_simp_suffix "perm" q_perm lthy14a;
  val q_fv = map (lift_thm qtys lthy15) fv_def;
  val lthy16 = note_simp_suffix "fv" q_fv lthy15;
  val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs;
  val lthy17 = note_simp_suffix "bn" q_bn lthy16;
  val _ = tracing "Lifting eq-iff";
(*  val _ = map tracing (map PolyML.makestring alpha_eq_iff);*)
  val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas3}) alpha_eq_iff
  val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms alphas2}) eq_iff_unfolded0
  val eq_iff_unfolded2 = map (Local_Defs.unfold lthy17 @{thms alphas} ) eq_iff_unfolded1
  val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded2;
  val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms alphas3}) q_eq_iff_pre0
  val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas2}) q_eq_iff_pre1
  val q_eq_iff = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre2
  val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17;
  val q_dis = map (lift_thm qtys lthy18) rel_dists;
  val lthy19 = note_simp_suffix "distinct" q_dis lthy18;
  val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt);
  val (_, lthy20) = Local_Theory.note ((Binding.empty,
    [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19;
  val _ = tracing "Finite Support";
  val supports = map (prove_supports lthy20 q_perm) consts;
  val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys);
  val thy3 = Local_Theory.exit_global lthy20;
  val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3;
  fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
  val lthy22 = Class.prove_instantiation_instance tac lthy21
  val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos;
  val (names, supp_eq_t) = supp_eq fv_alpha_all;
  val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1)) handle _ => [];
  val lthy23 = note_suffix "supp" q_supp lthy22;
in
  ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy23)
end
*}


ML {* 
(* parsing the datatypes and declaring *)
(* constructors in the local theory    *)
fun prepare_dts dt_strs lthy = 
let
  val thy = ProofContext.theory_of lthy
  
  fun mk_type full_tname tvrs =
    Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs)

  fun prep_cnstr lthy full_tname tvs (cname, anno_tys, mx, _) =
  let
    val tys = map (Syntax.read_typ lthy o snd) anno_tys
    val ty = mk_type full_tname tvs
  in
    ((cname, tys ---> ty, mx), (cname, tys, mx))
  end
  
  fun prep_dt lthy (tvs, tname, mx, cnstrs) = 
  let
    val full_tname = Sign.full_name thy tname
    val (cnstrs', cnstrs'') = 
      split_list (map (prep_cnstr lthy full_tname tvs) cnstrs)
  in
    (cnstrs', (tvs, tname, mx, cnstrs''))
  end 

  val (cnstrs, dts) = 
    split_list (map (prep_dt lthy) dt_strs)
in
  lthy
  |> Local_Theory.theory (Sign.add_consts_i (flat cnstrs))
  |> pair dts
end
*}

ML {*
(* parsing the binding function specification and *)
(* declaring the functions in the local theory    *)
fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy =
let
  val ((bn_funs, bn_eqs), _) = 
    Specification.read_spec bn_fun_strs bn_eq_strs lthy

  fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) 
  val bn_funs' = map prep_bn_fun bn_funs
in
  lthy
  |> Local_Theory.theory (Sign.add_consts_i bn_funs')
  |> pair (bn_funs', bn_eqs) 
end 
*}

ML {*
fun find_all eq xs (k',i) = 
  maps (fn (k, (v1, v2)) => if eq (k, k') then [(v1, v2, i)] else []) xs
*}

ML {*
(* associates every SOME with the index in the list; drops NONEs *)
fun mk_env xs =
  let
    fun mapp (_: int) [] = []
      | mapp i (a :: xs) = 
         case a of
           NONE => mapp (i + 1) xs
         | SOME x => (x, i) :: mapp (i + 1) xs
  in mapp 0 xs end
*}

ML {*
fun env_lookup xs x =
  case AList.lookup (op =) xs x of
    SOME x => x
  | NONE => error ("cannot find " ^ x ^ " in the binding specification.");
*}

ML {*
val recursive = Unsynchronized.ref false
val alpha_type = Unsynchronized.ref AlphaGen
*}

ML {*
fun prepare_binds dt_strs lthy = 
let
  fun extract_annos_binds dt_strs =
    map (map (fn (_, antys, _, bns) => (map fst antys, bns))) dt_strs

  fun prep_bn env bn_str =
    case (Syntax.read_term lthy bn_str) of
       Free (x, _) => (NONE, env_lookup env x)
     | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), !recursive), env_lookup env x)
     | _ => error (bn_str ^ " not allowed as binding specification.");  
 
  fun prep_typ env (i, opt_name) = 
    case opt_name of
      NONE => []
    | SOME x => find_all (op=) env (x,i);
        
  (* annos - list of annotation for each type (either NONE or SOME fo a type *)
  
  fun prep_binds (annos, bind_strs) = 
  let
    val env = mk_env annos (* for every label the index *)
    val binds = map (fn (x, y) => (x, prep_bn env y)) bind_strs  
  in
    map_index (prep_typ binds) annos
  end

  val result = map (map (map (map (fn (a, b, c) => 
    (a, b, c, if !alpha_type=AlphaLst andalso a = NONE then AlphaGen else !alpha_type)))))
      (map (map prep_binds) (extract_annos_binds (get_cnstrs dt_strs)))
 
  val _ = warning (@{make_string} result)

in
  result
end
*}

ML {*
fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy =
let
  fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx)

  val lthy0 = 
    Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy
  val (dts, lthy1) = 
    prepare_dts dt_strs lthy0
  val ((bn_funs, bn_eqs), lthy2) = 
    prepare_bn_funs bn_fun_strs bn_eq_strs lthy1
  val binds = prepare_binds dt_strs lthy2
in
  nominal_datatype2 dts bn_funs bn_eqs binds lthy |> snd
end
*}


(* Command Keyword *)

ML {*
let
   val kind = OuterKeyword.thy_decl
in
   OuterSyntax.local_theory "nominal_datatype" "test" kind 
     (main_parser >> nominal_datatype2_cmd)
end
*}


end