theory TypeSchemes
imports "../Nominal2"
begin
section {*** Type Schemes ***}
atom_decl name
(* defined as a single nominal datatype *)
nominal_datatype ty =
Var "name"
| Fun "ty" "ty"
and tys =
All xs::"name fset" ty::"ty" binds (set+) xs in ty
thm ty_tys.distinct
thm ty_tys.induct
thm ty_tys.inducts
thm ty_tys.exhaust
thm ty_tys.strong_exhaust
thm ty_tys.fv_defs
thm ty_tys.bn_defs
thm ty_tys.perm_simps
thm ty_tys.eq_iff
thm ty_tys.fv_bn_eqvt
thm ty_tys.size_eqvt
thm ty_tys.supports
thm ty_tys.supp
thm ty_tys.fresh
section {* defined as two separate nominal datatypes *}
nominal_datatype ty2 =
Var2 "name"
| Fun2 "ty2" "ty2"
nominal_datatype tys2 =
All2 xs::"name fset" ty::"ty2" binds (set+) xs in ty
thm tys2.distinct
thm tys2.induct tys2.strong_induct
thm tys2.exhaust tys2.strong_exhaust
thm tys2.fv_defs
thm tys2.bn_defs
thm tys2.perm_simps
thm tys2.eq_iff
thm tys2.fv_bn_eqvt
thm tys2.size_eqvt
thm tys2.supports
thm tys2.supp
thm tys2.fresh
text {* Some Tests about Alpha-Equality *}
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))"
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas fresh_star_def ty_tys.supp supp_at_base)
done
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))"
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
apply(simp add: alphas fresh_star_def supp_at_base ty_tys.supp)
done
lemma
shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))"
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas fresh_star_def ty_tys.supp supp_at_base)
done
lemma
assumes a: "a \<noteq> b"
shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))"
using a
apply(simp add: ty_tys.eq_iff Abs_eq_iff)
apply(clarify)
apply(simp add: alphas fresh_star_def ty_tys.eq_iff ty_tys.supp supp_at_base)
apply auto
done
end