the default sort for type-variables in nominal specifications is fs; it is automatically addded
theory LetPat
imports "../Nominal2"
begin
atom_decl name
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" binds x in t
| Let p::"pat" "trm" t::"trm" binds "bn p" in t
and pat =
PNil
| PVar "name"
| PTup "pat" "pat"
binder
bn::"pat \<Rightarrow> atom list"
where
"bn PNil = []"
| "bn (PVar x) = [atom x]"
| "bn (PTup p1 p2) = bn p1 @ bn p2"
thm trm_pat.eq_iff
thm trm_pat.distinct
thm trm_pat.induct
thm trm_pat.strong_induct[no_vars]
thm trm_pat.exhaust
thm trm_pat.strong_exhaust[no_vars]
thm trm_pat.fv_defs
thm trm_pat.bn_defs
thm trm_pat.perm_simps
thm trm_pat.eq_iff
thm trm_pat.fv_bn_eqvt
thm trm_pat.size
(* Nominal_Abs test *)
lemma alpha_res_alpha_set:
"(bs, x) \<approx>res op = supp p (cs, y) \<longleftrightarrow>
(bs \<inter> supp x, x) \<approx>set op = supp p (cs \<inter> supp y, y)"
using alpha_abs_set_abs_res alpha_abs_res_abs_set by blast
lemma
fixes x::"'a::fs"
assumes "(supp x - as) \<sharp>* p"
and "p \<bullet> x = y"
and "p \<bullet> (as \<inter> supp x) = bs \<inter> supp y"
shows "(as, x) \<approx>res (op =) supp p (bs, y)"
using assms
unfolding alpha_res_alpha_set
unfolding alphas
apply simp
apply rule
apply (rule trans)
apply (rule supp_perm_eq[symmetric, of _ p])
apply(subst supp_finite_atom_set)
apply (metis finite_Diff finite_supp)
apply (simp add: fresh_star_def)
apply blast
apply(perm_simp)
apply(simp)
done
lemma
fixes x::"'a::fs"
assumes "(supp x - as) \<sharp>* p"
and "p \<bullet> x = y"
and "p \<bullet> as = bs"
shows "(as, x) \<approx>set (op =) supp p (bs, y)"
using assms
unfolding alphas
apply simp
apply (rule trans)
apply (rule supp_perm_eq[symmetric, of _ p])
apply(subst supp_finite_atom_set)
apply (metis finite_Diff finite_supp)
apply(simp)
apply(perm_simp)
apply(simp)
done
lemma
fixes x::"'a::fs"
assumes "(supp x - set as) \<sharp>* p"
and "p \<bullet> x = y"
and "p \<bullet> as = bs"
shows "(as, x) \<approx>lst (op =) supp p (bs, y)"
using assms
unfolding alphas
apply simp
apply (rule trans)
apply (rule supp_perm_eq[symmetric, of _ p])
apply(subst supp_finite_atom_set)
apply (metis finite_Diff finite_supp)
apply(simp)
apply(perm_simp)
apply(simp)
done
end