(*<*)
theory Paper
imports "../Nominal/Nominal2_Base"
"../Nominal/Atoms"
"../Nominal/Nominal2_Abs"
"LaTeXsugar"
begin
abbreviation
UNIV_atom ("\<allatoms>")
where
"UNIV_atom \<equiv> UNIV::atom set"
notation (latex output)
sort_of ("sort _" [1000] 100) and
Abs_perm ("_") and
Rep_perm ("_") and
swap ("'(_ _')" [1000, 1000] 1000) and
fresh ("_ # _" [51, 51] 50) and
fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
Cons ("_::_" [78,77] 73) and
supp ("supp _" [78] 73) and
uminus ("-_" [78] 73) and
atom ("|_|") and
If ("if _ then _ else _" 10) and
Rep_name ("\<lfloor>_\<rfloor>") and
Abs_name ("\<lceil>_\<rceil>") and
Rep_var ("\<lfloor>_\<rfloor>") and
Abs_var ("\<lceil>_\<rceil>") and
sort_of_ty ("sort'_ty _")
(* BH: uncomment if you really prefer the dot notation
syntax (latex output)
"_Collect" :: "pttrn => bool => 'a set" ("(1{_ . _})")
*)
(* sort is used in Lists for sorting *)
hide_const sort
abbreviation
"sort \<equiv> sort_of"
lemma infinite_collect:
assumes "\<forall>x \<in> S. P x" "infinite S"
shows "infinite {x \<in> S. P x}"
using assms
apply(subgoal_tac "infinite {x. x \<in> S}")
apply(simp only: Inf_many_def[symmetric])
apply(erule INFM_mono)
apply(auto)
done
(*>*)
section {* Introduction *}
text {*
Nominal Isabelle provides a proving infratructure for convenient reasoning
about syntax involving binders, such as lambda terms or type schemes:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
@{text "\<lambda>x. t \<forall>{x\<^isub>1,\<dots>, x\<^isub>n}. \<tau>"}
\end{isabelle}
\noindent
At its core Nominal Isabelle is based on the nominal logic work by Pitts at
al \cite{GabbayPitts02,Pitts03}, whose most basic notion is a
sort-respecting permutation operation defined over a countably infinite
collection of sorted atoms. The atoms are used for representing variable names
that might be bound or free. Multiple sorts are necessary for being able to
represent different kinds of variables. For example, in the language Mini-ML
there are bound term variables in lambda abstractions and bound type variables in
type schemes. In order to be able to separate them, each kind of variables needs to be
represented by a different sort of atoms.
The nominal logic work has been the starting point for a number of proving
infrastructures, most notable by Norrish \cite{norrish04} in HOL4, by
Aydemir et al \cite{AydemirBohannonWeirich07} in Coq and the work by Urban
and Berghofer in Isabelle/HOL \cite{Urban08}. Its key attraction is a very
general notion, called \emph{support}, for the `set of free variables, or
atoms, of an object' that applies not just to lambda terms and type schemes,
but also to sets, products, lists, booleans and even functions. The notion of support
is derived from the permutation operation defined over the
hierarchy of types. This
permutation operation, written @{text "_ \<bullet> _"}, has proved to be much more
convenient for reasoning about syntax, in comparison to, say, arbitrary
renaming substitutions of atoms. One reason is that permutations are
bijective renamings of atoms and thus they can be easily `undone'---namely
by applying the inverse permutation. A corresponding inverse substitution
might not always exist, since renaming substitutions are in general only injective.
Another reason is that permutations preserve many constructions when reasoning about syntax.
For example, suppose a typing context @{text "\<Gamma>"} of the form
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
@{text "x\<^isub>1:\<tau>\<^isub>1, \<dots>, x\<^isub>n:\<tau>\<^isub>n"}
\end{isabelle}
\noindent
is said to be \emph{valid} provided none of its variables, or atoms, @{text "x\<^isub>i"}
occur twice. Then validity of typing contexts is preserved under
permutations in the sense that if @{text \<Gamma>} is valid then so is \mbox{@{text "\<pi> \<bullet> \<Gamma>"}} for
all permutations @{text "\<pi>"}. Again, this is \emph{not} the case for arbitrary
renaming substitutions, as they might identify some of the @{text "x\<^isub>i"} in @{text \<Gamma>}.
Permutations also behave uniformly with respect to HOL's logic connectives.
Applying a permutation to a formula gives, for example
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}lcl}
@{term "\<pi> \<bullet> (A \<and> B)"} & if and only if & @{text "(\<pi> \<bullet> A) \<and> (\<pi> \<bullet> B)"}\\
@{term "\<pi> \<bullet> (A \<longrightarrow> B)"} & if and only if & @{text "(\<pi> \<bullet> A) \<longrightarrow> (\<pi> \<bullet> B)"}\\
\end{tabular}
\end{isabelle}
\noindent
This uniform behaviour can also be extended to quantifiers and functions.
Because of these good properties of permutations, we are able to automate
reasoning to do with \emph{equivariance}. By equivariance we mean the property
that every permutation leaves a function unchanged, that is @{term "\<pi> \<bullet> f = f"}
for all @{text "\<pi>"}. This will often simplify arguments involving support
of functions, since if they are equivariant then they have empty support---or
`no free atoms'.
There are a number of subtle differences between the nominal logic work by
Pitts and the formalisation we will present in this paper. One difference
is that our
formalisation is compatible with HOL, in the sense that we only extend
HOL by some definitions, withouth the introduction of any new axioms.
The reason why the original nominal logic work is
incompatible with HOL has to do with the way how the finite support property
is enforced: FM-set theory is defined in \cite{Pitts01b} so that every set
in the FM-set-universe has finite support. In nominal logic \cite{Pitts03},
the axioms (E3) and (E4) imply that every function symbol and proposition
has finite support. However, there are notions in HOL that do \emph{not}
have finite support (we will give some examples). In our formalisation, we
will avoid the incompatibility of the original nominal logic work by not a
priory restricting our discourse to only finitely supported entities, rather
we will explicitly assume this property whenever it is needed in proofs. One
consequence is that we state our basic definitions not in terms of nominal
sets (as done for example in \cite{Pitts06}), but in terms of the weaker
notion of permutation types---essentially sets equipped with a ``sensible''
notion of permutation operation.
In the nominal logic woworkrk, the `new quantifier' plays a prominent role.
$\new$
Two binders
*}
section {* Sorted Atoms and Sort-Respecting Permutations *}
text {*
The two most basic notions in the nominal logic work are a countably
infinite collection of sorted atoms and sort-respecting permutations of atoms.
The existing nominal logic work usually leaves implicit
the sorting information for atoms and as far as we know leaves out a
description of how sorts are represented. In our formalisation, we
therefore have to make a design decision about how to implement sorted atoms
and sort-respecting permutations. One possibility, which we described in
\cite{Urban08}, is to have separate types for the different sorts of
atoms. However, we found that this does not blend well with type-classes in
Isabelle/HOL (see Section~\ref{related} about related work). Therefore we use here a
single unified atom type to represent atoms of different sorts. A basic
requirement is that there must be a countably infinite number of atoms of
each sort. This can be implemented as the datatype
*}
datatype atom\<iota> = Atom\<iota> string nat
text {*
\noindent
whereby the string argument specifies the sort of the atom.\footnote{A
similar design choice was made by Gunter et al \cite{GunterOsbornPopescu09}
for their variables.} The use of type \emph{string} for sorts is merely for
convenience; any countably infinite type would work as well.
The set of all atoms we shall write as @{term "UNIV::atom set"}.
We have two auxiliary functions for atoms, namely @{text sort}
and @{const nat_of} which are defined as
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
@{thm (lhs) sort_of.simps[no_vars]} & @{text "\<equiv>"} & @{thm (rhs) sort_of.simps[no_vars]}\\
@{thm (lhs) nat_of.simps[no_vars]} & @{text "\<equiv>"} & @{thm (rhs) nat_of.simps[no_vars]}
\end{tabular}\hfill\numbered{sortnatof}
\end{isabelle}
\noindent
We clearly have for every finite set @{text S}
of atoms and every sort @{text s} the property:
\begin{proposition}\label{choosefresh}\mbox{}\\
@{text "For a finite set of atoms S, there exists an atom a such that
sort a = s and a \<notin> S"}.
\end{proposition}
For implementing sort-respecting permutations, we use functions of type @{typ
"atom => atom"} that @{text "i)"} are bijective; @{text "ii)"} are the
identity on all atoms, except a finite number of them; and @{text "iii)"} map
each atom to one of the same sort. These properties can be conveniently stated
in Isabelle/HOL for a function @{text \<pi>} as follows:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{r@ {\hspace{4mm}}l}
i) & @{term "bij \<pi>"}\\
ii) & @{term "finite {a. \<pi> a \<noteq> a}"}\\
iii) & @{term "\<forall>a. sort (\<pi> a) = sort a"}
\end{tabular}\hfill\numbered{permtype}
\end{isabelle}
\noindent
Like all HOL-based theorem provers, Isabelle/HOL allows us to
introduce a new type @{typ perm} that includes just those functions
satisfying all three properties. For example the identity function,
written @{term id}, is included in @{typ perm}. Also function composition,
written \mbox{@{text "_ \<circ> _"}}, and function inversion, given by Isabelle/HOL's
inverse operator and written \mbox{@{text "inv _"}}, preserve the properties
@{text "i"}-@{text "iii"}.
However, a moment of thought is needed about how to construct non-trivial
permutations. In the nominal logic work it turned out to be most convenient
to work with swappings, written @{text "(a b)"}. In our setting the
type of swappings must be
@{text [display,indent=10] "(_ _) :: atom \<Rightarrow> atom \<Rightarrow> perm"}
\noindent
but since permutations are required to respect sorts, we must carefully
consider what happens if a user states a swapping of atoms with different
sorts. The following definition\footnote{To increase legibility, we omit
here and in what follows the @{term Rep_perm} and @{term "Abs_perm"}
wrappers that are needed in our implementation in Isabelle/HOL since we defined permutation
not to be the full function space, but only those functions of type @{typ
perm} satisfying properties @{text i}-@{text "iii"} in \eqref{permtype}.}
@{text [display,indent=10] "(a b) \<equiv> \<lambda>c. if a = c then b else (if b = c then a else c)"}
\noindent
does not work in general, because @{text a} and @{text b} may have different
sorts---in which case the function would violate property @{text iii} in \eqref{permtype}. We
could make the definition of swappings partial by adding the precondition
@{term "sort a = sort b"}, which would mean that in case @{text a} and
@{text b} have different sorts, the value of @{text "(a b)"} is unspecified.
However, this looked like a cumbersome solution, since sort-related side
conditions would be required everywhere, even to unfold the definition. It
turned out to be more convenient to actually allow the user to state
`ill-sorted' swappings but limit their `damage' by defaulting to the
identity permutation in the ill-sorted case:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}rl}
@{text "(a b) \<equiv>"} & @{text "if (sort a = sort b)"}\\
& \hspace{3mm}@{text "then \<lambda>c. if a = c then b else (if b = c then a else c)"}\\
& \hspace{3mm}@{text "else id"}
\end{tabular}\hfill\numbered{swapdef}
\end{isabelle}
\noindent
This function is bijective, the identity on all atoms except
@{text a} and @{text b}, and sort respecting. Therefore it is
a function in @{typ perm}.
One advantage of using functions as a representation for
permutations is that it is unique. For example the swappings
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm swap_commute[no_vars]}\hspace{10mm}
@{text "(a a) = id"}
\end{tabular}\hfill\numbered{swapeqs}
\end{isabelle}
\noindent
are \emph{equal}. Another advantage of the function representation is that
they form a (non-com\-mu\-ta\-tive) group provided we define
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}r@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{10mm}}r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
@{thm (lhs) zero_perm_def[no_vars]} & @{text "\<equiv>"} & @{thm (rhs) zero_perm_def[no_vars]} &
@{thm (lhs) plus_perm_def[where p="\<pi>\<^isub>1" and q="\<pi>\<^isub>2"]} & @{text "\<equiv>"} &
@{thm (rhs) plus_perm_def[where p="\<pi>\<^isub>1" and q="\<pi>\<^isub>2"]}\\
@{thm (lhs) uminus_perm_def[where p="\<pi>"]} & @{text "\<equiv>"} & @{thm (rhs) uminus_perm_def[where p="\<pi>"]} &
@{thm (lhs) minus_perm_def[where ?p1.0="\<pi>\<^isub>1" and ?p2.0="\<pi>\<^isub>2"]} & @{text "\<equiv>"} &
@{thm (rhs) minus_perm_def[where ?p1.0="\<pi>\<^isub>1" and ?p2.0="\<pi>\<^isub>2"]}
\end{tabular}\hfill\numbered{groupprops}
\end{isabelle}
\noindent
and verify the four simple properties
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm add_assoc[where a="\<pi>\<^isub>1" and b="\<pi>\<^isub>2" and c="\<pi>\<^isub>3"]}\\
@{thm monoid_add_class.add_0_left[where a="\<pi>::perm"]} \hspace{9mm}
@{thm monoid_add_class.add_0_right[where a="\<pi>::perm"]} \hspace{9mm}
@{thm group_add_class.left_minus[where a="\<pi>::perm"]}
\end{tabular}
\end{isabelle}
\noindent
The technical importance of this fact is that we can rely on
Isabelle/HOL's existing simplification infrastructure for groups, which will
come in handy when we have to do calculations with permutations.
Note that Isabelle/HOL defies standard conventions of mathematical notation
by using additive syntax even for non-commutative groups. Obviously,
composition of permutations is not commutative in general, because @{text
"\<pi>\<^sub>1 + \<pi>\<^sub>2 \<noteq> \<pi>\<^sub>2 + \<pi>\<^sub>1"}. But since the point of this paper is to implement the
nominal theory as smoothly as possible in Isabelle/HOL, we tolerate
the non-standard notation in order to reuse the existing libraries.
A permutation operation, written @{text "\<pi> \<bullet> x"}, applies a permutation
@{text "\<pi>"} to an object @{text "x"}. This operation has the generic type
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
@{text "_ \<bullet> _ :: perm \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}
\end{isabelle}
\noindent
and Isabelle/HOL will allow us to give a definition of this operation for
`base' types, such as booleans and atoms, and for type-constructors, such as
products and lists. In order to reason abstractly about this operation,
we use Isabelle/HOL's type classes~\cite{Wenzel04} and state the following two
\emph{permutation properties}:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}r@ {\hspace{4mm}}p{10cm}}
i) & @{thm permute_zero[no_vars]}\\
ii) & @{thm permute_plus[where p="\<pi>\<^isub>1" and q="\<pi>\<^isub>2",no_vars]}
\end{tabular}\hfill\numbered{newpermprops}
\end{isabelle}
\noindent
The use of type classes allows us to delegate much of the routine resoning involved in
determining whether these properties are satisfied to Isabelle/HOL's type system:
we only have to establish that base types satisfy them and that type-constructors
preserve them. Isabelle/HOL will use this information and determine whether
an object @{text x} with a compound type satisfies the permutation properties.
For this we define the notion of a \emph{permutation type}:
\begin{definition}[Permutation type]
A type @{text "\<beta>"} is a \emph{permutation type} if the permutation
properties in \eqref{newpermprops} are satisfied for every @{text "x"} of type
@{text "\<beta>"}.
\end{definition}
\noindent
The type classes also allows us to establish generic lemmas involving the
permutation operation. First, it follows from the laws governing
groups that a permutation and its inverse cancel each other. That is, for any
@{text "x"} of a permutation type:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm permute_minus_cancel(1)[where p="\<pi>", no_vars]}\hspace{10mm}
@{thm permute_minus_cancel(2)[where p="\<pi>", no_vars]}
\end{tabular}\hfill\numbered{cancel}
\end{isabelle}
\noindent
Consequently, in a permutation type the permutation operation @{text "\<pi> \<bullet> _"}~~is bijective,
which in turn implies the property
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm (lhs) permute_eq_iff[where p="\<pi>", no_vars]}
$\;$if and only if$\;$
@{thm (rhs) permute_eq_iff[where p="\<pi>", no_vars]}.
\end{tabular}\hfill\numbered{permuteequ}
\end{isabelle}
\noindent
We can also show that the following property holds for any permutation type.
\begin{lemma}\label{permutecompose}
Given @{term x} is of permutation type, then
@{text "\<pi>\<^isub>1 \<bullet> (\<pi>\<^isub>2 \<bullet> x) = (\<pi>\<^isub>1 \<bullet> \<pi>\<^isub>2) \<bullet> (\<pi>\<^isub>1 \<bullet> x)"}.
\end{lemma}
\begin{proof} The proof is as follows:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}[b]{@ {}c@ {\hspace{2mm}}l@ {\hspace{8mm}}l}
& @{text "\<pi>\<^isub>1 \<bullet> \<pi>\<^isub>2 \<bullet> x"}\\
@{text "="} & @{text "\<pi>\<^isub>1 \<bullet> \<pi>\<^isub>2 \<bullet> (-\<pi>\<^isub>1) \<bullet> \<pi>\<^isub>1 \<bullet> x"} & by \eqref{cancel}\\
@{text "="} & @{text "(\<pi>\<^isub>1 + \<pi>\<^isub>2 - \<pi>\<^isub>1) \<bullet> (\<pi>\<^isub>1 \<bullet> x)"} & by {\rm(\ref{newpermprops}.@{text "ii"})}\\
@{text "\<equiv>"} & @{text "(\<pi>\<^isub>1 \<bullet> \<pi>\<^isub>2) \<bullet> (\<pi>\<^isub>1 \<bullet> x)"}\\
\end{tabular}\hfill\qed
\end{isabelle}
\end{proof}
\noindent
Next we define the permutation operation for some types:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l@ {\hspace{4mm}}l@ {}}
atoms: & @{thm permute_atom_def[where p="\<pi>",no_vars, THEN eq_reflection]}\\
functions: & @{text "\<pi> \<bullet> f \<equiv> \<lambda>x. \<pi> \<bullet> (f ((-\<pi>) \<bullet> x))"}\\
permutations: & @{thm permute_perm_def[where p="\<pi>" and q="\<pi>'", THEN eq_reflection]}\\
sets: & @{thm permute_set_eq[where p="\<pi>", no_vars, THEN eq_reflection]}\\
booleans: & @{thm permute_bool_def[where p="\<pi>", no_vars, THEN eq_reflection]}\\
lists: & @{thm permute_list.simps(1)[where p="\<pi>", no_vars, THEN eq_reflection]}\\
& @{thm permute_list.simps(2)[where p="\<pi>", no_vars, THEN eq_reflection]}\\
products: & @{thm permute_prod.simps[where p="\<pi>", no_vars, THEN eq_reflection]}\\
nats: & @{thm permute_nat_def[where p="\<pi>", no_vars, THEN eq_reflection]}\\
\end{tabular}\hfill\numbered{permdefs}
\end{isabelle}
\noindent
and establish:
\begin{theorem}
If @{text \<beta>}, @{text "\<beta>\<^isub>1"} and @{text "\<beta>\<^isub>2"} are permutation types,
then so are @{text "atom"}, @{text "\<beta>\<^isub>1 \<Rightarrow> \<beta>\<^isub>2"},
@{text perm}, @{term "\<beta> set"}, @{term "\<beta> list"}, @{term "\<beta>\<^isub>1 \<times> \<beta>\<^isub>2"},
@{text bool} and @{text "nat"}.
\end{theorem}
\begin{proof}
All statements are by unfolding the definitions of the permutation operations and simple
calculations involving addition and minus. With permutations for example we
have
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}[b]{@ {}rcl}
@{text "0 \<bullet> \<pi>'"} & @{text "\<equiv>"} & @{text "0 + \<pi>' - 0 = \<pi>'"}\\
@{text "(\<pi>\<^isub>1 + \<pi>\<^isub>2) \<bullet> \<pi>'"} & @{text "\<equiv>"} & @{text "(\<pi>\<^isub>1 + \<pi>\<^isub>2) + \<pi>' - (\<pi>\<^isub>1 + \<pi>\<^isub>2)"}\\
& @{text "="} & @{text "(\<pi>\<^isub>1 + \<pi>\<^isub>2) + \<pi>' - \<pi>\<^isub>2 - \<pi>\<^isub>1"}\\
& @{text "="} & @{text "\<pi>\<^isub>1 + (\<pi>\<^isub>2 + \<pi>' - \<pi>\<^isub>2) - \<pi>\<^isub>1"} @{text "\<equiv>"} @{text "\<pi>\<^isub>1 \<bullet> \<pi>\<^isub>2 \<bullet> \<pi>'"}
\end{tabular}\hfill\qed
\end{isabelle}
\end{proof}
\noindent
Note that the permutation operation for functions is defined so that we have the property
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
@{text "\<pi> \<bullet> (f x) ="}
@{thm (rhs) permute_fun_app_eq[where p="\<pi>", no_vars]}
\hfill\numbered{permutefunapp}
\end{isabelle}
\noindent
which is a simple consequence of the definition and the cancellation property in \eqref{cancel}.
*}
section {* Equivariance *}
text {*
An important notion in the nominal logic work is \emph{equivariance}.
An equivariant function is one that is invariant under the
permutation operation. This notion can be defined
uniformly for all constants in HOL as follows:
\begin{definition}[Equivariance]\label{equivariance}
A constant @{text c} is \emph{equivariant} if @{term "\<forall>\<pi>. \<pi> \<bullet> c = c"}.
\end{definition}
\noindent
There are a number of equivalent formulations for the equivariance property.
For example, assuming @{text c} is of type @{text "\<alpha> \<Rightarrow> \<beta>"}, then equivariance
can also be stated as
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{text "\<forall>\<pi> x. \<pi> \<bullet> (c x) = c (\<pi> \<bullet> x)"}
\end{tabular}\hfill\numbered{altequivariance}
\end{isabelle}
\noindent
To see that this formulation implies the definition, we just unfold the
definition of the permutation operation for functions and simplify with the equation
and the cancellation property shown in \eqref{cancel}. To see the other direction, we use
\eqref{permutefunapp}. Similarly for functions with more than one argument.
Both formulations of equivariance have their advantages and disadvantages:
\eqref{altequivariance} is usually easier to establish, since statements are
commonly given in a form where functions are fully applied. For example we
can easily show that equality is equivariant
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm eq_eqvt[where p="\<pi>", no_vars]}
\end{tabular}
\end{isabelle}
\noindent
using the permutation operation on booleans and property \eqref{permuteequ}.
Lemma~\ref{permutecompose} establishes that the permutation operation is
equivariant. The permutation operation for lists and products, shown in \eqref{permdefs},
state that the constructors for products, @{text "Nil"} and @{text Cons} are equivariant. Also
the booleans @{const True} and @{const False} are equivariant by the permutation
operation. Furthermore
a simple calculation will show that our swapping functions are equivariant, that is
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm swap_eqvt[where p="\<pi>", no_vars]}
\end{tabular}\hfill\numbered{swapeqvt}
\end{isabelle}
\noindent
for all @{text a}, @{text b} and @{text \<pi>}.
It is also easy to see that the boolean operators, like
@{text "\<and>"}, @{text "\<or>"}, @{text "\<not>"} and @{text "\<longrightarrow>"} are all equivariant.
In contrast, the equation in Definition~\ref{equivariance} together with the permutation
operation for functions and the properties in \eqref{permutefunapp} and \eqref{cancel}
leads to a simple rewrite system that pushes permutations inside a term until they reach
either function constants or variables. The permutations in front of
equivariant constants disappear. This helps us to establish equivariance
for any notion in HOL that is defined in terms of more primitive notions. To
see this let us define \emph{HOL-terms}. They are given by the grammar
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
@{text "t ::= c | x | t\<^isub>1 t\<^isub>2 | \<lambda>x. t"}
\hfill\numbered{holterms}
\end{isabelle}
\noindent
whereby @{text c} stands for constants. We assume HOL-terms are fully typed, but
for the sake of greater legibility we leave the typing information implicit.
We also assume the usual notions for free and bound variables of a HOL-term.
With these definitions in place we can define the notion of an \emph{equivariant}
HOL-term
\begin{definition}[Equivariant HOL-term]
A HOL-term is \emph{equivariant}, provided it is closed and composed of applications,
abstractions and equivariant constants only.
\end{definition}
\noindent
For equivariant terms we have
\begin{lemma}
For an equivariant HOL-term @{text "t"}, @{term "\<pi> \<bullet> t = t"} for all permutations @{term "\<pi>"}.
\end{lemma}
\begin{proof}
By induction on the grammar of HOL-terms. The case for variables cannot arise since
equivariant HOL-terms are closed. The case for constants is clear by Definition
\ref{equivariance}. The case for applications is also straightforward since by
\eqref{permutefunapp} we have @{term "\<pi> \<bullet> (t\<^isub>1 t\<^isub>2) = (\<pi> \<bullet> t\<^isub>1) (\<pi> \<bullet> t\<^isub>2)"}.
For the case of abstractions we can reason as follows
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}[b]{@ {}c@ {\hspace{2mm}}l@ {\hspace{8mm}}l}
& @{text "\<pi> \<bullet> (\<lambda>x. t)"}\\
@{text "\<equiv>"} & @{text "\<lambda>y. \<pi> \<bullet> ((\<lambda>x. t) ((-\<pi>) \<bullet> y))"} & by \eqref{permdefs}\\
\end{tabular}\hfill\qed
\end{isabelle}
\end{proof}
database of equivariant functions
Such a rewrite system is often very helpful
in determining whether @{text "\<pi> \<bullet> t = t"} holds for a compound term @{text t}. ???
*}
section {* Support and Freshness *}
text {*
The most original aspect of the nominal logic work of Pitts is a general
definition for `the set of free variables, or free atoms, of an object @{text "x"}'. This
definition is general in the sense that it applies not only to lambda terms,
but to any type for which a permutation operation is defined
(like lists, sets, functions and so on).
\begin{definition}[Support] Given @{text x} is of permutation type, then
@{thm [display,indent=10] supp_def[no_vars, THEN eq_reflection]}
\end{definition}
\noindent
(Note that due to the definition of swapping in \eqref{swapdef}, we do not
need to explicitly restrict @{text a} and @{text b} to have the same sort.)
There is also the derived notion for when an atom @{text a} is \emph{fresh}
for an @{text x} of permutation type, defined as
@{thm [display,indent=10] fresh_def[no_vars]}
\noindent
We also use the notation @{thm (lhs) fresh_star_def[no_vars]} for sets ot atoms
defined as follows
@{thm [display,indent=10] fresh_star_def[no_vars]}
\noindent
A striking consequence of these definitions is that we can prove
without knowing anything about the structure of @{term x} that
swapping two fresh atoms, say @{text a} and @{text b}, leave
@{text x} unchanged. For the proof we use the following lemma
about swappings applied to an @{text x}:
\begin{lemma}\label{swaptriple}
Assuming @{text x} is of permutation type, and @{text a}, @{text b} and @{text c}
have the same sort, then \mbox{@{thm (prem 3) swap_rel_trans[no_vars]}} and
@{thm (prem 4) swap_rel_trans[no_vars]} imply @{thm (concl) swap_rel_trans[no_vars]}.
\end{lemma}
\begin{proof}
The cases where @{text "a = c"} and @{text "b = c"} are immediate.
For the remaining case it is, given our assumptions, easy to calculate
that the permutations
@{thm [display,indent=10] (concl) swap_triple[no_vars]}
\noindent
are equal. The lemma is then by application of the second permutation
property shown in~\eqref{newpermprops}.\hfill\qed
\end{proof}
\begin{theorem}\label{swapfreshfresh}
Let @{text x} be of permutation type.
@{thm [mode=IfThen] swap_fresh_fresh[no_vars]}
\end{theorem}
\begin{proof}
If @{text a} and @{text b} have different sort, then the swapping is the identity.
If they have the same sort, we know by definition of support that both
@{term "finite {c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x}"} and @{term "finite {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x}"}
hold. So the union of these sets is finite too, and we know by Proposition~\ref{choosefresh}
that there is an atom @{term c}, with the same sort as @{term a} and @{term b},
that satisfies \mbox{@{term "(a \<rightleftharpoons> c) \<bullet> x = x"}} and @{term "(b \<rightleftharpoons> c) \<bullet> x = x"}.
Now the theorem follows from Lemma~\ref{swaptriple}.\hfill\qed
\end{proof}
\noindent
Two important properties that need to be established for later calculations is
that @{text "supp"} and freshness are equivariant. For this we first show that:
\begin{lemma}\label{half}
If @{term x} is a permutation type, then @{thm (lhs) fresh_permute_iff[where p="\<pi>",no_vars]}
if and only if @{thm (rhs) fresh_permute_iff[where p="\<pi>",no_vars]}.
\end{lemma}
\begin{proof}
\begin{isabelle}
\begin{tabular}[t]{c@ {\hspace{2mm}}l@ {\hspace{5mm}}l}
& @{thm (lhs) fresh_permute_iff[where p="\<pi>",no_vars]}\\
@{text "\<equiv>"} &
@{term "finite {b. (\<pi> \<bullet> a \<rightleftharpoons> b) \<bullet> \<pi> \<bullet> x \<noteq> \<pi> \<bullet> x}"}\\
@{text "\<Leftrightarrow>"}
& @{term "finite {b. (\<pi> \<bullet> a \<rightleftharpoons> \<pi> \<bullet> b) \<bullet> \<pi> \<bullet> x \<noteq> \<pi> \<bullet> x}"}
& since @{text "\<pi> \<bullet> _"} is bijective\\
@{text "\<Leftrightarrow>"}
& @{term "finite {b. \<pi> \<bullet> (a \<rightleftharpoons> b) \<bullet> x \<noteq> \<pi> \<bullet> x}"}
& by Lemma~\ref{permutecompose} and \eqref{swapeqvt}\\
@{text "\<Leftrightarrow>"}
& @{term "finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}"}
& by \eqref{permuteequ}\\
@{text "\<equiv>"}
& @{thm (rhs) fresh_permute_iff[where p="\<pi>",no_vars]}
\end{tabular}
\end{isabelle}\hfill\qed
\end{proof}
\noindent
Together with the definition of the permutation operation on booleans,
we can immediately infer equivariance of freshness:
@{thm [display,indent=10] fresh_eqvt[where p="\<pi>",no_vars]}
\noindent
Now equivariance of @{text "supp"}, namely
@{thm [display,indent=10] supp_eqvt[where p="\<pi>",no_vars]}
\noindent
is by noting that @{thm supp_conv_fresh[no_vars]} and that freshness and
the logical connectives are equivariant. ??? Equivariance
A simple consequence of the definition of support and equivariance is that
if a function @{text f} is equivariant then we have
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm (concl) supp_fun_eqvt[no_vars]}
\end{tabular}\hfill\numbered{suppeqvtfun}
\end{isabelle}
\noindent
For function applications we can establish the two following properties.
\begin{lemma} Let @{text f} and @{text x} be of permutation type, then
\begin{isabelle}
\begin{tabular}{r@ {\hspace{4mm}}p{10cm}}
@{text "i)"} & @{thm[mode=IfThen] fresh_fun_app[no_vars]}\\
@{text "ii)"} & @{thm supp_fun_app[no_vars]}\\
\end{tabular}
\end{isabelle}
\end{lemma}
\begin{proof}
???
\end{proof}
While the abstract properties of support and freshness, particularly
Theorem~\ref{swapfreshfresh}, are useful for developing Nominal Isabelle,
one often has to calculate the support of some concrete object. This is
straightforward for example for booleans, nats, products and lists:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l@ {\hspace{4mm}}l@ {}}
@{text "booleans"}: & @{term "supp b = {}"}\\
@{text "nats"}: & @{term "supp n = {}"}\\
@{text "products"}: & @{thm supp_Pair[no_vars]}\\
@{text "lists:"} & @{thm supp_Nil[no_vars]}\\
& @{thm supp_Cons[no_vars]}\\
\end{tabular}
\end{isabelle}
\noindent
But establishing the support of atoms and permutations is a bit
trickier. To do so we will use the following notion about a \emph{supporting set}.
\begin{definition}[Supporting Set]
A set @{text S} \emph{supports} @{text x} if for all atoms @{text a} and @{text b}
not in @{text S} we have @{term "(a \<rightleftharpoons> b) \<bullet> x = x"}.
\end{definition}
\noindent
The main motivation for this notion is that we can characterise @{text "supp x"}
as the smallest finite set that supports @{text "x"}. For this we prove:
\begin{lemma}\label{supports} Let @{text x} be of permutation type.
\begin{isabelle}
\begin{tabular}{r@ {\hspace{4mm}}p{10cm}}
i) & @{thm[mode=IfThen] supp_is_subset[no_vars]}\\
ii) & @{thm[mode=IfThen] supp_supports[no_vars]}\\
iii) & @{thm (concl) supp_is_least_supports[no_vars]}
provided @{thm (prem 1) supp_is_least_supports[no_vars]},
@{thm (prem 2) supp_is_least_supports[no_vars]}
and @{text "S"} is the least such set, that means formally,
for all @{text "S'"}, if @{term "finite S'"} and
@{term "S' supports x"} then @{text "S \<subseteq> S'"}.
\end{tabular}
\end{isabelle}
\end{lemma}
\begin{proof}
For @{text "i)"} we derive a contradiction by assuming there is an atom @{text a}
with @{term "a \<in> supp x"} and @{text "a \<notin> S"}. Using the second fact, the
assumption that @{term "S supports x"} gives us that @{text S} is a superset of
@{term "{b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}"}, which is finite by the assumption of @{text S}
being finite. But this means @{term "a \<notin> supp x"}, contradicting our assumption.
Property @{text "ii)"} is by a direct application of
Theorem~\ref{swapfreshfresh}. For the last property, part @{text "i)"} proves
one ``half'' of the claimed equation. The other ``half'' is by property
@{text "ii)"} and the fact that @{term "supp x"} is finite by @{text "i)"}.\hfill\qed
\end{proof}
\noindent
These are all relatively straightforward proofs adapted from the existing
nominal logic work. However for establishing the support of atoms and
permutations we found the following `optimised' variant of @{text "iii)"}
more useful:
\begin{lemma}\label{optimised} Let @{text x} be of permutation type.
We have that @{thm (concl) finite_supp_unique[no_vars]}
provided @{thm (prem 1) finite_supp_unique[no_vars]},
@{thm (prem 2) finite_supp_unique[no_vars]}, and for
all @{text "a \<in> S"} and all @{text "b \<notin> S"}, with @{text a}
and @{text b} having the same sort, \mbox{@{term "(a \<rightleftharpoons> b) \<bullet> x \<noteq> x"}}
\end{lemma}
\begin{proof}
By Lemma \ref{supports}@{text ".iii)"} we have to show that for every finite
set @{text S'} that supports @{text x}, \mbox{@{text "S \<subseteq> S'"}} holds. We will
assume that there is an atom @{text "a"} that is element of @{text S}, but
not @{text "S'"} and derive a contradiction. Since both @{text S} and
@{text S'} are finite, we can by Proposition \ref{choosefresh} obtain an atom
@{text b}, which has the same sort as @{text "a"} and for which we know
@{text "b \<notin> S"} and @{text "b \<notin> S'"}. Since we assumed @{text "a \<notin> S'"} and
we have that @{text "S' supports x"}, we have on one hand @{term "(a \<rightleftharpoons> b) \<bullet> x
= x"}. On the other hand, the fact @{text "a \<in> S"} and @{text "b \<notin> S"} imply
@{term "(a \<rightleftharpoons> b) \<bullet> x \<noteq> x"} using the assumed implication. This gives us the
contradiction.\hfill\qed
\end{proof}
\noindent
Using this lemma we only have to show the following three proof-obligations
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}r@ {\hspace{4mm}}l}
i) & @{term "{c} supports c"}\\
ii) & @{term "finite {c}"}\\
iii) & @{text "\<forall>a \<in> {c} b \<notin> {c}. sort a = sort b \<longrightarrow> (a b) \<bullet> c \<noteq> c"}
\end{tabular}
\end{isabelle}
\noindent
in order to establish that @{thm supp_atom[where a="c", no_vars]} holds. In
Isabelle/HOL these proof-obligations can be discharged by easy
simplifications. Similar proof-obligations arise for the support of
permutations, which is
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{thm supp_perm[where p="\<pi>", no_vars]}
\end{tabular}
\end{isabelle}
\noindent
The only proof-obligation that is
interesting is the one where we have to show that
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{text "If \<pi> \<bullet> a \<noteq> a, \<pi> \<bullet> b = b and sort a = sort b, then (a b) \<bullet> \<pi> \<noteq> \<pi>"}.
\end{tabular}
\end{isabelle}
\noindent
For this we observe that
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}rcl}
@{thm (lhs) perm_swap_eq[where p="\<pi>", no_vars]} &
if and only if &
@{thm (rhs) perm_swap_eq[where p="\<pi>", no_vars]}
\end{tabular}
\end{isabelle}
\noindent
holds by a simple calculation using the group properties of permutations.
The proof-obligation can then be discharged by analysing the inequality
between the permutations @{term "(\<pi> \<bullet> a \<rightleftharpoons> b)"} and @{term "(a \<rightleftharpoons> b)"}.
The main point about support is that whenever an object @{text x} has finite
support, then Proposition~\ref{choosefresh} allows us to choose for @{text x} a
fresh atom with arbitrary sort. This is an important operation in Nominal
Isabelle in situations where, for example, a bound variable needs to be
renamed. To allow such a choice, we only have to assume that
@{text "finite (supp x)"} holds. For more convenience we
can define a type class for types where every element has finite support, and
prove that the types @{term "atom"}, @{term "perm"}, lists, products and
booleans are instances of this type class.
Unfortunately, this does not work for sets or Isabelle/HOL's function
type. There are functions and sets definable in Isabelle/HOL for which the
finite support property does not hold. A simple example of a function with
infinite support is @{const nat_of} shown in \eqref{sortnatof}. This
function's support is the set of \emph{all} atoms @{term "UNIV::atom set"}.
To establish this we show
@{term "\<not> a \<sharp> nat_of"}. This is equivalent to assuming the set @{term
"{b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}"} is finite and deriving a
contradiction. From the assumption we also know that @{term "{a} \<union> {b. (a \<rightleftharpoons>
b) \<bullet> nat_of \<noteq> nat_of}"} is finite. Then we can use
Proposition~\ref{choosefresh} to choose an atom @{text c} such that @{term
"c \<noteq> a"}, @{term "sort_of c = sort_of a"} and @{term "(a \<rightleftharpoons> c) \<bullet> nat_of =
nat_of"}. Now we can reason as follows:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}[b]{@ {}rcl@ {\hspace{5mm}}l}
@{text "nat_of a"} & @{text "="} & @{text "(a \<rightleftharpoons> c) \<bullet> (nat_of a)"} & by def.~of permutations on nats\\
& @{text "="} & @{term "((a \<rightleftharpoons> c) \<bullet> nat_of) ((a \<rightleftharpoons> c) \<bullet> a)"} & by \eqref{permutefunapp}\\
& @{text "="} & @{term "nat_of c"} & by assumptions on @{text c}\\
\end{tabular}
\end{isabelle}
\noindent
But this means we have that @{term "nat_of a = nat_of c"} and @{term "sort_of a = sort_of c"}.
This implies that atoms @{term a} and @{term c} must be equal, which clashes with our
assumption @{term "c \<noteq> a"} about how we chose @{text c}.\footnote{Cheney \cite{Cheney06}
gives similar examples for constructions that have infinite support.}
*}
section {* Support of Finite Sets *}
text {*
Also the set type is one instance whose elements are not generally finitely
supported (we will give an example in Section~\ref{concrete}).
However, we can easily show that finite sets and co-finite sets of atoms are finitely
supported, because their support can be characterised as:
\begin{lemma}\label{finatomsets}\mbox{}\\
@{text "i)"} If @{text S} is a finite set of atoms, then @{thm (concl) supp_finite_atom_set[no_vars]}.\\
@{text "ii)"} If @{term "UNIV - (S::atom set)"} is a finite set of atoms, then
@{thm (concl) supp_cofinite_atom_set[no_vars]}.
\end{lemma}
\begin{proof}
Both parts can be easily shown by Lemma~\ref{optimised}. We only have to observe
that a swapping @{text "(a b)"} leaves a set @{text S} unchanged provided both
@{text a} and @{text b} are elements in @{text S} or both are not in @{text S}.
However if the sorts of a @{text a} and @{text b} agree, then the swapping will
change @{text S} if either of them is an element in @{text S} and the other is
not.\hfill\qed
\end{proof}
\noindent
Note that a consequence of the second part of this lemma is that
@{term "supp (UNIV::atom set) = {}"}.
More difficult, however, is it to establish that finite sets of finitely
supported objects are finitely supported. For this we first show that
the union of the suports of finitely many and finitely supported objects
is finite, namely
\begin{lemma}\label{unionsupp}
If @{text S} is a finite set whose elements are all finitely supported, then\\
@{text "i)"} @{thm (concl) Union_of_finite_supp_sets[no_vars]} and\\
@{text "ii)"} @{thm (concl) Union_included_in_supp[no_vars]}.
\end{lemma}
\begin{proof}
The first part is by a straightforward induction on the finiteness of @{text S}.
For the second part, we know that @{term "\<Union>x\<in>S. supp x"} is a set of atoms, which
by the first part is finite. Therefore we know by Lemma~\ref{finatomsets}.@{text "i)"}
that @{term "(\<Union>x\<in>S. supp x) = supp (\<Union>x\<in>S. supp x)"}. Taking @{text "f"} to be
\mbox{@{text "\<lambda>S. \<Union> (supp ` S)"}}, we can write the right hand side as @{text "supp (f S)"}.
Since @{text "f"} is an equivariant function, we have that
@{text "supp (f S) \<subseteq> supp S"} by ??? This completes the second part.\hfill\qed
\end{proof}
\noindent
With this lemma in place we can establish that
\begin{lemma}
@{thm[mode=IfThen] supp_of_finite_sets[no_vars]}
\end{lemma}
\begin{proof}
The right-to-left inclusion is proved in Lemma~\ref{unionsupp}.@{text "ii)"}. To show the inclusion
in the other direction we have to show Lemma~\ref{supports}.@{text "i)"}
\end{proof}
*}
section {* Induction Principles *}
text {*
While the use of functions as permutation provides us with a unique
representation for permutations (for example @{term "(a \<rightleftharpoons> b)"} and
@{term "(b \<rightleftharpoons> a)"} are equal permutations), this representation has
one draw back: it does not come readily with an induction principle.
Such an induction principle is handy for deriving properties like
@{thm [display, indent=10] supp_perm_eq[no_vars]}
\noindent
However, it is not too difficult to derive an induction principle,
given the fact that we allow only permutations with a finite domain.
*}
section {* An Abstraction Type *}
text {*
To that end, we will consider
first pairs @{text "(as, x)"} of type @{text "(atom set) \<times> \<beta>"}. These pairs
are intended to represent the abstraction, or binding, of the set of atoms @{text
"as"} in the body @{text "x"}.
The first question we have to answer is when two pairs @{text "(as, x)"} and
@{text "(bs, y)"} are $\alpha$-equivalent? (For the moment we are interested in
the notion of $\alpha$-equivalence that is \emph{not} preserved by adding
vacuous binders.) To answer this question, we identify four conditions: {\it (i)}
given a free-atom function @{text "fa"} of type \mbox{@{text "\<beta> \<Rightarrow> atom
set"}}, then @{text x} and @{text y} need to have the same set of free
atoms; moreover there must be a permutation @{text p} such that {\it
(ii)} @{text p} leaves the free atoms of @{text x} and @{text y} unchanged, but
{\it (iii)} ``moves'' their bound names so that we obtain modulo a relation,
say \mbox{@{text "_ R _"}}, two equivalent terms. We also require that {\it (iv)}
@{text p} makes the sets of abstracted atoms @{text as} and @{text bs} equal. The
requirements {\it (i)} to {\it (iv)} can be stated formally as follows:
%
\begin{equation}\label{alphaset}
\begin{array}{@ {\hspace{10mm}}r@ {\hspace{2mm}}l@ {\hspace{4mm}}r}
\multicolumn{3}{l}{@{text "(as, x) \<approx>set R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
& @{term "fa(x) - as = fa(y) - bs"} & \mbox{\it (i)}\\
@{text "\<and>"} & @{term "(fa(x) - as) \<sharp>* p"} & \mbox{\it (ii)}\\
@{text "\<and>"} & @{text "(p \<bullet> x) R y"} & \mbox{\it (iii)}\\
@{text "\<and>"} & @{term "(p \<bullet> as) = bs"} & \mbox{\it (iv)}\\
\end{array}
\end{equation}
\noindent
Note that this relation depends on the permutation @{text
"p"}; $\alpha$-equivalence between two pairs is then the relation where we
existentially quantify over this @{text "p"}. Also note that the relation is
dependent on a free-atom function @{text "fa"} and a relation @{text
"R"}. The reason for this extra generality is that we will use
$\approx_{\,\textit{set}}$ for both ``raw'' terms and $\alpha$-equated terms. In
the latter case, @{text R} will be replaced by equality @{text "="} and we
will prove that @{text "fa"} is equal to @{text "supp"}.
It might be useful to consider first some examples about how these definitions
of $\alpha$-equivalence pan out in practice. For this consider the case of
abstracting a set of atoms over types (as in type-schemes). We set
@{text R} to be the usual equality @{text "="} and for @{text "fa(T)"} we
define
\begin{center}
@{text "fa(x) = {x}"} \hspace{5mm} @{text "fa(T\<^isub>1 \<rightarrow> T\<^isub>2) = fa(T\<^isub>1) \<union> fa(T\<^isub>2)"}
\end{center}
\noindent
Now recall the examples shown in \eqref{ex1}, \eqref{ex2} and
\eqref{ex3}. It can be easily checked that @{text "({x, y}, x \<rightarrow> y)"} and
@{text "({y, x}, y \<rightarrow> x)"} are $\alpha$-equivalent according to
$\approx_{\,\textit{set}}$ and $\approx_{\,\textit{res}}$ by taking @{text p} to
be the swapping @{term "(x \<rightleftharpoons> y)"}. In case of @{text "x \<noteq> y"}, then @{text
"([x, y], x \<rightarrow> y)"} $\not\approx_{\,\textit{list}}$ @{text "([y, x], x \<rightarrow> y)"}
since there is no permutation that makes the lists @{text "[x, y]"} and
@{text "[y, x]"} equal, and also leaves the type \mbox{@{text "x \<rightarrow> y"}}
unchanged. Another example is @{text "({x}, x)"} $\approx_{\,\textit{res}}$
@{text "({x, y}, x)"} which holds by taking @{text p} to be the identity
permutation. However, if @{text "x \<noteq> y"}, then @{text "({x}, x)"}
$\not\approx_{\,\textit{set}}$ @{text "({x, y}, x)"} since there is no
permutation that makes the sets @{text "{x}"} and @{text "{x, y}"} equal
(similarly for $\approx_{\,\textit{list}}$). It can also relatively easily be
shown that all three notions of $\alpha$-equivalence coincide, if we only
abstract a single atom.
In the rest of this section we are going to introduce three abstraction
types. For this we define
%
\begin{equation}
@{term "abs_set (as, x) (bs, x) \<equiv> \<exists>p. alpha_set (as, x) equal supp p (bs, x)"}
\end{equation}
\noindent
(similarly for $\approx_{\,\textit{abs\_res}}$
and $\approx_{\,\textit{abs\_list}}$). We can show that these relations are equivalence
relations and equivariant.
\begin{lemma}\label{alphaeq}
The relations $\approx_{\,\textit{abs\_set}}$, $\approx_{\,\textit{abs\_list}}$
and $\approx_{\,\textit{abs\_res}}$ are equivalence relations, and if @{term
"abs_set (as, x) (bs, y)"} then also @{term "abs_set (p \<bullet> as, p \<bullet> x) (p \<bullet>
bs, p \<bullet> y)"} (similarly for the other two relations).
\end{lemma}
\begin{proof}
Reflexivity is by taking @{text "p"} to be @{text "0"}. For symmetry we have
a permutation @{text p} and for the proof obligation take @{term "-p"}. In case
of transitivity, we have two permutations @{text p} and @{text q}, and for the
proof obligation use @{text "q + p"}. All conditions are then by simple
calculations.
\end{proof}
\noindent
This lemma allows us to use our quotient package for introducing
new types @{text "\<beta> abs_set"}, @{text "\<beta> abs_res"} and @{text "\<beta> abs_list"}
representing $\alpha$-equivalence classes of pairs of type
@{text "(atom set) \<times> \<beta>"} (in the first two cases) and of type @{text "(atom list) \<times> \<beta>"}
(in the third case).
The elements in these types will be, respectively, written as:
\begin{center}
@{term "Abs_set as x"} \hspace{5mm}
@{term "Abs_res as x"} \hspace{5mm}
@{term "Abs_lst as x"}
\end{center}
\noindent
indicating that a set (or list) of atoms @{text as} is abstracted in @{text x}. We will
call the types \emph{abstraction types} and their elements
\emph{abstractions}. The important property we need to derive is the support of
abstractions, namely:
\begin{theorem}[Support of Abstractions]\label{suppabs}
Assuming @{text x} has finite support, then\\[-6mm]
\begin{center}
\begin{tabular}{l@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
%@ {thm (lhs) supp_abs(1)[no_vars]} & $=$ & @ {thm (rhs) supp_abs(1)[no_vars]}\\
%@ {thm (lhs) supp_abs(2)[no_vars]} & $=$ & @ {thm (rhs) supp_abs(2)[no_vars]}\\
%@ {thm (lhs) supp_abs(3)[where bs="as", no_vars]} & $=$ & @ {thm (rhs) supp_abs(3)[where bs="as", no_vars]}
\end{tabular}
\end{center}
\end{theorem}
\noindent
Below we will show the first equation. The others
follow by similar arguments. By definition of the abstraction type @{text "abs_set"}
we have
%
\begin{equation}\label{abseqiff}
%@ {thm (lhs) abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\;
%@ {thm (rhs) abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
\end{equation}
\noindent
and also
%
\begin{equation}\label{absperm}
@{thm permute_Abs[no_vars]}
\end{equation}
\noindent
The second fact derives from the definition of permutations acting on pairs
\eqref{permute} and $\alpha$-equivalence being equivariant
(see Lemma~\ref{alphaeq}). With these two facts at our disposal, we can show
the following lemma about swapping two atoms in an abstraction.
\begin{lemma}
%@ {thm[mode=IfThen] abs_swap1(1)[where bs="as", no_vars]}
\end{lemma}
\begin{proof}
This lemma is straightforward using \eqref{abseqiff} and observing that
the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
\end{proof}
\noindent
Assuming that @{text "x"} has finite support, this lemma together
with \eqref{absperm} allows us to show
%
\begin{equation}\label{halfone}
%@ {thm abs_supports(1)[no_vars]}
\end{equation}
\noindent
which by Property~\ref{supportsprop} gives us ``one half'' of
Theorem~\ref{suppabs}. The ``other half'' is a bit more involved. To establish
it, we use a trick from \cite{Pitts04} and first define an auxiliary
function @{text aux}, taking an abstraction as argument:
%
\begin{center}
@{thm supp_set.simps[THEN eq_reflection, no_vars]}
\end{center}
\noindent
Using the second equation in \eqref{equivariance}, we can show that
@{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) =
(supp (p \<bullet> x)) - (p \<bullet> as)"}) and therefore has empty support.
This in turn means
%
\begin{center}
@{term "supp (supp_gen (Abs_set as x)) \<subseteq> supp (Abs_set as x)"}
\end{center}
\noindent
using \eqref{suppfun}. Assuming @{term "supp x - as"} is a finite set,
we further obtain
%
\begin{equation}\label{halftwo}
%@ {thm (concl) supp_abs_subset1(1)[no_vars]}
\end{equation}
\noindent
since for finite sets of atoms, @{text "bs"}, we have
@{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes
Theorem~\ref{suppabs}.
The method of first considering abstractions of the
form @{term "Abs_set as x"} etc is motivated by the fact that
we can conveniently establish at the Isabelle/HOL level
properties about them. It would be
laborious to write custom ML-code that derives automatically such properties
for every term-constructor that binds some atoms. Also the generality of
the definitions for $\alpha$-equivalence will help us in the next section.
*}
section {* Concrete Atom Types\label{concrete} *}
text {*
So far, we have presented a system that uses only a single multi-sorted atom
type. This design gives us the flexibility to define operations and prove
theorems that are generic with respect to atom sorts. For example, as
illustrated above the @{term supp} function returns a set that includes the
free atoms of \emph{all} sorts together; the flexibility offered by the new
atom type makes this possible.
However, the single multi-sorted atom type does not make an ideal interface
for end-users of Nominal Isabelle. If sorts are not distinguished by
Isabelle's type system, users must reason about atom sorts manually. That
means subgoals involving sorts must be discharged explicitly within proof
scripts, instead of being inferred by Isabelle/HOL's type checker. In other
cases, lemmas might require additional side conditions about sorts to be true.
For example, swapping @{text a} and @{text b} in the pair \mbox{@{term "(a,
b)"}} will only produce the expected result if we state the lemma in
Isabelle/HOL as:
*}
lemma
fixes a b :: "atom"
assumes asm: "sort a = sort b"
shows "(a \<rightleftharpoons> b) \<bullet> (a, b) = (b, a)"
using asm by simp
text {*
\noindent
Fortunately, it is possible to regain most of the type-checking automation
that is lost by moving to a single atom type. We accomplish this by defining
\emph{subtypes} of the generic atom type that only include atoms of a single
specific sort. We call such subtypes \emph{concrete atom types}.
The following Isabelle/HOL command defines a concrete atom type called
\emph{name}, which consists of atoms whose sort equals the string @{term
"''name''"}.
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\isacommand{typedef}\ \ @{typ name} = @{term "{a. sort\<iota> a = ''name''}"}
\end{isabelle}
\noindent
This command automatically generates injective functions that map from the
concrete atom type into the generic atom type and back, called
representation and abstraction functions, respectively. We will write these
functions as follows:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l@ {\hspace{10mm}}l}
@{text "\<lfloor>_\<rfloor> :: name \<Rightarrow> atom"} &
@{text "\<lceil>_\<rceil> :: atom \<Rightarrow> name"}
\end{tabular}
\end{isabelle}
\noindent
With the definition @{thm permute_name_def [where p="\<pi>", THEN
eq_reflection, no_vars]}, it is straightforward to verify that the type
@{typ name} is a permutation type.
In order to reason uniformly about arbitrary concrete atom types, we define a
type class that characterises type @{typ name} and other similarly-defined
types. The definition of the concrete atom type class is as follows: First,
every concrete atom type must be a permutation type. In addition, the class
defines an overloaded function that maps from the concrete type into the
generic atom type, which we will write @{text "|_|"}. For each class
instance, this function must be injective and equivariant, and its outputs
must all have the same sort, that is
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{r@ {\hspace{3mm}}l}
i) if @{thm (lhs) atom_eq_iff [no_vars]} then @{thm (rhs) atom_eq_iff [no_vars]}\\
ii) @{thm atom_eqvt[where p="\<pi>", no_vars]}\\
iii) @{thm sort_of_atom_eq [no_vars]}
\end{tabular}\hfill\numbered{atomprops}
\end{isabelle}
\noindent
With the definition @{thm atom_name_def [THEN eq_reflection, no_vars]} we can
show that @{typ name} satisfies all the above requirements of a concrete atom
type.
The whole point of defining the concrete atom type class was to let users
avoid explicit reasoning about sorts. This benefit is realised by defining a
special swapping operation of type @{text "\<alpha> \<Rightarrow> \<alpha>
\<Rightarrow> perm"}, where @{text "\<alpha>"} is a concrete atom type:
@{thm [display,indent=10] flip_def [THEN eq_reflection, no_vars]}
\noindent
As a consequence of its type, the @{text "\<leftrightarrow>"}-swapping
operation works just like the generic swapping operation, but it does not
require any sort-checking side conditions---the sort-correctness is ensured by
the types! For @{text "\<leftrightarrow>"} we can establish the following
simplification rule:
@{thm [display,indent=10] permute_flip_at[no_vars]}
\noindent
If we now want to swap the \emph{concrete} atoms @{text a} and @{text b}
in the pair @{term "(a, b)"} we can establish the lemma as follows:
*}
lemma
fixes a b :: "name"
shows "(a \<leftrightarrow> b) \<bullet> (a, b) = (b, a)"
by simp
text {*
\noindent
There is no need to state an explicit premise involving sorts.
We can automate the process of creating concrete atom types, so that users
can define a new one simply by issuing the command
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
\isacommand{atom\_decl}~~@{text "name"}
\end{tabular}
\end{isabelle}
\noindent
This command can be implemented using less than 100 lines of custom ML-code.
In comparison, the old version of Nominal Isabelle included more than 1000
lines of ML-code for creating concrete atom types, and for defining various
type classes and instantiating generic lemmas for them. In addition to
simplifying the ML-code, the setup here also offers user-visible improvements:
Now concrete atoms can be declared at any point of a formalisation, and
theories that separately declare different atom types can be merged
together---it is no longer required to collect all atom declarations in one
place.
*}
section {* Related Work\label{related} *}
text {*
Add here comparison with old work.
Using a single atom type to represent atoms of different sorts and
representing permutations as functions are not new ideas; see
\cite{GunterOsbornPopescu09} \footnote{function rep.} The main contribution
of this paper is to show an example of how to make better theorem proving
tools by choosing the right level of abstraction for the underlying
theory---our design choices take advantage of Isabelle's type system, type
classes and reasoning infrastructure. The novel technical contribution is a
mechanism for dealing with ``Church-style'' lambda-terms \cite{Church40} and
HOL-based languages \cite{PittsHOL4} where variables and variable binding
depend on type annotations.
The paper is organised as follows\ldots
The main point is that the above reasoning blends smoothly with the reasoning
infrastructure of Isabelle/HOL; no custom ML-code is necessary and a single
type class suffices.
With this
design one can represent permutations as lists of pairs of atoms and the
operation of applying a permutation to an object as the function
@{text [display,indent=10] "_ \<bullet> _ :: (\<alpha> \<times> \<alpha>) list \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}
\noindent
where @{text "\<alpha>"} stands for a type of atoms and @{text "\<beta>"} for the type
of the objects on which the permutation acts. For atoms
the permutation operation is defined over the length of lists as follows
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
@{text "[] \<bullet> c"} & @{text "="} & @{text c}\\
@{text "(a b)::\<pi> \<bullet> c"} & @{text "="} &
$\begin{cases} @{text a} & \textrm{if}~@{text "\<pi> \<bullet> c = b"}\\
@{text b} & \textrm{if}~@{text "\<pi> \<bullet> c = a"}\\
@{text "\<pi> \<bullet> c"} & \textrm{otherwise}\end{cases}$
\end{tabular}\hfill\numbered{atomperm}
\end{isabelle}
\noindent
where we write @{text "(a b)"} for a swapping of atoms @{text "a"} and
@{text "b"}. For atoms with different type than the permutation, we
define @{text "\<pi> \<bullet> c \<equiv> c"}.
With the separate atom types and the list representation of permutations it
is impossible in systems like Isabelle/HOL to state an ``ill-sorted''
permutation, since the type system excludes lists containing atoms of
different type. However, a disadvantage is that whenever we need to
generalise induction hypotheses by quantifying over permutations, we have to
build quantifications like
@{text [display,indent=10] "\<forall>\<pi>\<^isub>1 \<dots> \<forall>\<pi>\<^isub>n. \<dots>"}
\noindent
where the @{text "\<pi>\<^isub>i"} are of type @{text "(\<alpha>\<^isub>i \<times> \<alpha>\<^isub>i) list"}.
The reason is that the permutation operation behaves differently for
every @{text "\<alpha>\<^isub>i"} and the type system does not allow use to have a
single quantification to stand for all permutations. Similarly, the
notion of support
@{text [display,indent=10] "supp _ :: \<beta> \<Rightarrow> \<alpha> set"}
\noindent
which we will define later, cannot be
used to express the support of an object over \emph{all} atoms. The reason
is that support can behave differently for each @{text
"\<alpha>\<^isub>i"}. This problem is annoying, because if we need to know in
a statement that an object, say @{text "x"}, is finitely supported we end up
with having to state premises of the form
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{text "finite ((supp x) :: \<alpha>\<^isub>1 set) , \<dots>, finite ((supp x) :: \<alpha>\<^isub>n set)"}
\end{tabular}\hfill\numbered{fssequence}
\end{isabelle}
\noindent
Because of these disadvantages, we will use in this paper a single unified atom type to
represent atoms of different sorts. Consequently, we have to deal with the
case that a swapping of two atoms is ill-sorted: we cannot rely anymore on
the type systems to exclude them.
We also will not represent permutations as lists of pairs of atoms (as done in
\cite{Urban08}). Although an
advantage of this representation is that the basic operations on
permutations are already defined in Isabelle's list library: composition of
two permutations (written @{text "_ @ _"}) is just list append, and
inversion of a permutation (written @{text "_\<^sup>-\<^sup>1"}) is just
list reversal, and another advantage is that there is a well-understood
induction principle for lists, a disadvantage is that permutations
do not have unique representations as lists. We have to explicitly identify
them according to the relation
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}l}
@{text "\<pi>\<^isub>1 \<sim> \<pi>\<^isub>2 \<equiv> \<forall>a. \<pi>\<^isub>1 \<bullet> a = \<pi>\<^isub>2 \<bullet> a"}
\end{tabular}\hfill\numbered{permequ}
\end{isabelle}
\noindent
This is a problem when lifting the permutation operation to other types, for
example sets, functions and so on. For this we need to ensure that every definition
is well-behaved in the sense that it satisfies some
\emph{permutation properties}. In the list representation we need
to state these properties as follows:
\begin{isabelle}\ \ \ \ \ \ \ \ \ \ %%%
\begin{tabular}{@ {}r@ {\hspace{4mm}}p{10cm}}
i) & @{text "[] \<bullet> x = x"}\\
ii) & @{text "(\<pi>\<^isub>1 @ \<pi>\<^isub>2) \<bullet> x = \<pi>\<^isub>1 \<bullet> (\<pi>\<^isub>2 \<bullet> x)"}\\
iii) & if @{text "\<pi>\<^isub>1 \<sim> \<pi>\<^isub>2"} then @{text "\<pi>\<^isub>1 \<bullet> x = \<pi>\<^isub>2 \<bullet> x"}
\end{tabular}\hfill\numbered{permprops}
\end{isabelle}
\noindent
where the last clause explicitly states that the permutation operation has
to produce the same result for related permutations. Moreover,
``permutations-as-lists'' do not satisfy the group properties. This means by
using this representation we will not be able to reuse the extensive
reasoning infrastructure in Isabelle about groups. Because of this, we will represent
in this paper permutations as functions from atoms to atoms. This representation
is unique and satisfies the laws of non-commutative groups.
*}
section {* Conclusion *}
text {*
This proof pearl describes a new formalisation of the nominal logic work by
Pitts et al. With the definitions we presented here, the formal reasoning blends
smoothly with the infrastructure of the Isabelle/HOL theorem prover.
Therefore the formalisation will be the underlying theory for a
new version of Nominal Isabelle.
The main difference of this paper with respect to existing work on Nominal
Isabelle is the representation of atoms and permutations. First, we used a
single type for sorted atoms. This design choice means for a term @{term t},
say, that its support is completely characterised by @{term "supp t"}, even
if the term contains different kinds of atoms. Also, whenever we have to
generalise an induction so that a property @{text P} is not just established
for all @{text t}, but for all @{text t} \emph{and} under all permutations
@{text \<pi>}, then we only have to state @{term "\<forall>\<pi>. P (\<pi> \<bullet> t)"}. The reason is
that permutations can now consist of multiple swapping each of which can
swap different kinds of atoms. This simplifies considerably the reasoning
involved in building Nominal Isabelle.
Second, we represented permutations as functions so that the associated
permutation operation has only a single type parameter. This is very convenient
because the abstract reasoning about permutations fits cleanly
with Isabelle/HOL's type classes. No custom ML-code is required to work
around rough edges. Moreover, by establishing that our permutations-as-functions
representation satisfy the group properties, we were able to use extensively
Isabelle/HOL's reasoning infrastructure for groups. This often reduced proofs
to simple calculations over @{text "+"}, @{text "-"} and @{text "0"}.
An interesting point is that we defined the swapping operation so that a
swapping of two atoms with different sorts is \emph{not} excluded, like
in our older work on Nominal Isabelle, but there is no ``effect'' of such
a swapping (it is defined as the identity). This is a crucial insight
in order to make the approach based on a single type of sorted atoms to work.
But of course it is analogous to the well-known trick of defining division by
zero to return zero.
We noticed only one disadvantage of the permutations-as-functions: Over
lists we can easily perform inductions. For permutations made up from
functions, we have to manually derive an appropriate induction principle. We
can establish such a principle, but we have no real experience yet whether ours
is the most useful principle: such an induction principle was not needed in
any of the reasoning we ported from the old Nominal Isabelle, except
when showing that if @{term "\<forall>a \<in> supp x. a \<sharp> p"} implies @{term "p \<bullet> x = x"}.
Finally, our implementation of sorted atoms turned out powerful enough to
use it for representing variables that carry on additional information, for
example typing annotations. This information is encoded into the sorts. With
this we can represent conveniently binding in ``Church-style'' lambda-terms
and HOL-based languages. While dealing with such additional information in
dependent type-theories, such as LF or Coq, is straightforward, we are not
aware of any other approach in a non-dependent HOL-setting that can deal
conveniently with such binders.
The formalisation presented here will eventually become part of the Isabelle
distribution, but for the moment it can be downloaded from the
Mercurial repository linked at
\href{http://isabelle.in.tum.de/nominal/download}
{http://isabelle.in.tum.de/nominal/download}.\smallskip
\noindent
{\bf Acknowledgements:} We are very grateful to Jesper Bengtson, Stefan
Berghofer and Cezary Kaliszyk for their comments on earlier versions
of this paper. We are also grateful to the anonymous referee who helped us to
put the work into the right context.
*}
(*<*)
end
(*>*)