Nominal/Nominal2_Base_Exec.thy
author Cezary Kaliszyk <cezarykaliszyk@gmail.com>
Thu, 24 May 2012 10:17:32 +0200
changeset 3175 52730e5ec8cb
parent 3173 9876d73adb2b
child 3176 31372760c2fb
permissions -rw-r--r--
Synchronize Nominal2_Base_Exec with Nominal2_Base, equivariance for Let, avoid overloading approx twice and changes for new isabelle

(*  Title:      Nominal2_Base
    Authors:    Christian Urban, Brian Huffman, Cezary Kaliszyk

    Basic definitions and lemma infrastructure for 
    Nominal Isabelle. 
*)
theory Nominal2_Base
imports Main 
        "~~/src/HOL/Library/Infinite_Set"
        "~~/src/HOL/Quotient_Examples/FSet"
        "GPerm"
  "~~/src/HOL/Library/List_lexord"
  "~~/src/HOL/Library/Product_ord"
  "~~/src/HOL/Library/Efficient_Nat"
  "~~/src/HOL/Library/Char_ord"
  "~~/src/HOL/Library/Code_Char_chr"
  "~~/src/HOL/Library/Code_Char_ord"
keywords
  "atom_decl" "equivariance" :: thy_decl
uses ("nominal_basics.ML")
     ("nominal_thmdecls.ML")
     ("nominal_permeq.ML")
     ("nominal_library.ML")
     ("nominal_atoms.ML")
     ("nominal_eqvt.ML")
begin

section {* Atoms and Sorts *}

text {* A simple implementation for atom_sorts is strings. *}
(* types atom_sort = string *)

text {* To deal with Church-like binding we use trees of
  strings as sorts. *}

datatype atom_sort = Sort "string" "atom_sort list"

datatype atom = Atom atom_sort nat


text {* Basic projection function. *}

primrec
  sort_of :: "atom \<Rightarrow> atom_sort"
where
  "sort_of (Atom s n) = s"

primrec
  nat_of :: "atom \<Rightarrow> nat"
where
  "nat_of (Atom s n) = n"


text {* There are infinitely many atoms of each sort. *}
lemma INFM_sort_of_eq: 
  shows "INFM a. sort_of a = s"
proof -
  have "INFM i. sort_of (Atom s i) = s" by simp
  moreover have "inj (Atom s)" by (simp add: inj_on_def)
  ultimately show "INFM a. sort_of a = s" by (rule INFM_inj)
qed

lemma infinite_sort_of_eq:
  shows "infinite {a. sort_of a = s}"
  using INFM_sort_of_eq unfolding INFM_iff_infinite .

lemma atom_infinite [simp]: 
  shows "infinite (UNIV :: atom set)"
  using subset_UNIV infinite_sort_of_eq
  by (rule infinite_super)

lemma obtain_atom:
  fixes X :: "atom set"
  assumes X: "finite X"
  obtains a where "a \<notin> X" "sort_of a = s"
proof -
  from X have "MOST a. a \<notin> X"
    unfolding MOST_iff_cofinite by simp
  with INFM_sort_of_eq
  have "INFM a. sort_of a = s \<and> a \<notin> X"
    by (rule INFM_conjI)
  then obtain a where "a \<notin> X" "sort_of a = s"
    by (auto elim: INFM_E)
  then show ?thesis ..
qed

lemma atom_components_eq_iff:
  fixes a b :: atom
  shows "a = b \<longleftrightarrow> sort_of a = sort_of b \<and> nat_of a = nat_of b"
  by (induct a, induct b, simp)


section {* Sort-Respecting Permutations *}

definition "sort_respecting p \<longleftrightarrow> (\<forall>a. sort_of (gpermute p a) = sort_of a)"

lemma sort_respecting_0[simp]:
  "sort_respecting (0\<Colon>atom gperm)"
  by (simp add: sort_respecting_def)

typedef (open) perm = "{p::atom gperm. sort_respecting p}"
  by (auto intro: exI[of _ "0"])

setup_lifting type_definition_perm

lemma perm_eq_rep:
  "p = q \<longleftrightarrow> Rep_perm p = Rep_perm q"
  by (simp add: Rep_perm_inject)

lift_definition mk_perm :: "atom gperm \<Rightarrow> perm" is
  "\<lambda>p. if sort_respecting p then p else 0" by simp

lemma Rep_perm_mk_perm [simp]:
  "Rep_perm (mk_perm p) = (if sort_respecting p then p else 0)"
  by (simp add: mk_perm_def Abs_perm_inverse)

instance perm :: size ..


subsection {* Permutations form a (multiplicative) group *}

instantiation perm :: group_add
begin

lift_definition zero_perm :: "perm" is "0" by simp

lift_definition uminus_perm :: "perm \<Rightarrow> perm" is "uminus"
  unfolding sort_respecting_def
  by transfer (auto, metis perm_apply_minus)

lift_definition plus_perm :: "perm \<Rightarrow> perm \<Rightarrow> perm" is "plus"
  unfolding sort_respecting_def
  by transfer (simp add: perm_add_apply)

definition "(p :: perm) - q = p + - q"

lemma Rep_perm_0 [simp, code abstract]:
  "Rep_perm 0 = 0"
  by (metis (mono_tags) zero_perm.rep_eq)

lemma Rep_perm_uminus [simp, code abstract]:
  "Rep_perm (- p) = - (Rep_perm p)"
  by (metis uminus_perm.rep_eq)

lemma Rep_perm_add [simp, code abstract]:
  "Rep_perm (p + q) = (Rep_perm p) + (Rep_perm q)"
  by (simp add: plus_perm.rep_eq)

instance
  apply default
  unfolding minus_perm_def
  by (transfer, simp add: add_assoc)+

end


section {* Implementation of swappings *}

lift_definition swap :: "atom \<Rightarrow> atom \<Rightarrow> perm"  ("'(_ \<rightleftharpoons> _')")
  is "(\<lambda>a b. (if sort_of a = sort_of b then mk_perm (gswap a b) else 0))" .

lemma sort_respecting_swap [simp]:
  "sort_of a = sort_of b \<Longrightarrow> sort_respecting (gswap a b)"
  unfolding sort_respecting_def
  by transfer auto

lemma Rep_swap [simp, code abstract]:
  "Rep_perm (swap a b) = (if sort_of a = sort_of b then gswap a b else 0)"
  by (simp add: swap_def)

lemma swap_different_sorts [simp]:
  "sort_of a \<noteq> sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) = 0"
  by (simp add: perm_eq_rep)

lemma swap_cancel:
  shows "(a \<rightleftharpoons> b) + (a \<rightleftharpoons> b) = 0"
  and   "(a \<rightleftharpoons> b) + (b \<rightleftharpoons> a) = 0"
  by (simp_all add: perm_eq_rep)

lemma swap_self [simp]:
  "(a \<rightleftharpoons> a) = 0"
  by (simp add: perm_eq_rep)

lemma minus_swap [simp]:
  "- (a \<rightleftharpoons> b) = (a \<rightleftharpoons> b)"
  by (simp add: perm_eq_rep)

lemma swap_commute:
  "(a \<rightleftharpoons> b) = (b \<rightleftharpoons> a)"
  by (simp add: perm_eq_rep swap_commute)

lemma swap_triple:
  assumes "a \<noteq> b" and "c \<noteq> b"
  assumes "sort_of a = sort_of b" "sort_of b = sort_of c"
  shows "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)"
  using assms by (simp add: perm_eq_rep swap_triple)

section {* Permutation Types *}

text {*
  Infix syntax for @{text permute} has higher precedence than
  addition, but lower than unary minus.
*}

class pt =
  fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75)
  assumes permute_zero [simp]: "0 \<bullet> x = x"
  assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)"
begin

lemma permute_diff [simp]:
  shows "(p - q) \<bullet> x = p \<bullet> - q \<bullet> x"
  unfolding diff_minus by simp

lemma permute_minus_cancel [simp]:
  shows "p \<bullet> - p \<bullet> x = x"
  and   "- p \<bullet> p \<bullet> x = x"
  unfolding permute_plus [symmetric] by simp_all

lemma permute_swap_cancel [simp]:
  shows "(a \<rightleftharpoons> b) \<bullet> (a \<rightleftharpoons> b) \<bullet> x = x"
  unfolding permute_plus [symmetric]
  by (simp add: swap_cancel)

lemma permute_swap_cancel2 [simp]:
  shows "(a \<rightleftharpoons> b) \<bullet> (b \<rightleftharpoons> a) \<bullet> x = x"
  unfolding permute_plus [symmetric]
  by (simp add: swap_commute)

lemma inj_permute [simp]: 
  shows "inj (permute p)"
  by (rule inj_on_inverseI)
     (rule permute_minus_cancel)

lemma surj_permute [simp]: 
  shows "surj (permute p)"
  by (rule surjI, rule permute_minus_cancel)

lemma bij_permute [simp]: 
  shows "bij (permute p)"
  by (rule bijI [OF inj_permute surj_permute])

lemma inv_permute: 
  shows "inv (permute p) = permute (- p)"
  by (rule inv_equality) (simp_all)

lemma permute_minus: 
  shows "permute (- p) = inv (permute p)"
  by (simp add: inv_permute)

lemma permute_eq_iff [simp]: 
  shows "p \<bullet> x = p \<bullet> y \<longleftrightarrow> x = y"
  by (rule inj_permute [THEN inj_eq])

end

subsection {* Permutations for atoms *}

instantiation atom :: pt
begin

definition
  "p \<bullet> a = gpermute (Rep_perm p) a"

instance
  by default (simp_all add: permute_atom_def)

end

lemma sort_of_permute [simp]:
  shows "sort_of (p \<bullet> a) = sort_of a"
  by (metis Rep_perm mem_Collect_eq sort_respecting_def permute_atom_def)

lemma swap_atom:
  shows "(a \<rightleftharpoons> b) \<bullet> c =
           (if sort_of a = sort_of b
            then (if c = a then b else if c = b then a else c) else c)"
  by (auto simp add: permute_atom_def)

lemma swap_atom_simps [simp]:
  "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> a = b"
  "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> b = a"
  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> c = c"
  unfolding swap_atom by simp_all

lemma perm_eq_iff:
  fixes p q :: "perm"
  shows "p = q \<longleftrightarrow> (\<forall>a::atom. p \<bullet> a = q \<bullet> a)"
  unfolding permute_atom_def perm_eq_rep
  by (simp add: gperm_eq)

subsection {* Permutations for permutations *}

instantiation perm :: pt
begin

definition
  "p \<bullet> q = p + q - p"

instance
  by default
     (simp_all add: permute_perm_def diff_minus minus_add add_assoc)

end

lemma permute_self:
  shows "p \<bullet> p = p"
  unfolding permute_perm_def
  by (simp add: diff_minus add_assoc)

lemma pemute_minus_self:
  shows "- p \<bullet> p = p"
  unfolding permute_perm_def
  by (simp add: diff_minus add_assoc)


subsection {* Permutations for functions *}

instantiation "fun" :: (pt, pt) pt
begin

definition
  "p \<bullet> f = (\<lambda>x. p \<bullet> (f (- p \<bullet> x)))"

instance
  by default
     (simp_all add: permute_fun_def minus_add)

end

lemma permute_fun_app_eq:
  shows "p \<bullet> (f x) = (p \<bullet> f) (p \<bullet> x)"
  unfolding permute_fun_def by simp


subsection {* Permutations for booleans *}

instantiation bool :: pt
begin

definition "p \<bullet> (b::bool) = b"

instance
  by (default)
     (simp_all add: permute_bool_def)

end

lemma permute_boolE:
  fixes P::"bool"
  shows "p \<bullet> P \<Longrightarrow> P"
  by (simp add: permute_bool_def)

lemma permute_boolI:
  fixes P::"bool"
  shows "P \<Longrightarrow> p \<bullet> P"
  by(simp add: permute_bool_def)

subsection {* Permutations for sets *}

instantiation "set" :: (pt) pt
begin

definition
  "p \<bullet> X = {p \<bullet> x | x. x \<in> X}" 

instance
apply default
apply (auto simp add: permute_set_def)
done

end

lemma permute_set_eq:
  shows "p \<bullet> X = {x. - p \<bullet> x \<in> X}"
unfolding permute_set_def
by (auto) (metis permute_minus_cancel(1))

lemma permute_set_eq_image:
  shows "p \<bullet> X = permute p ` X"
  unfolding permute_set_def by auto

lemma permute_set_eq_vimage:
  shows "p \<bullet> X = permute (- p) -` X"
  unfolding permute_set_eq vimage_def
  by simp
  
lemma permute_finite [simp]:
  shows "finite (p \<bullet> X) = finite X"
  unfolding permute_set_eq_vimage
  using bij_permute by (rule finite_vimage_iff)

lemma swap_set_not_in:
  assumes a: "a \<notin> S" "b \<notin> S"
  shows "(a \<rightleftharpoons> b) \<bullet> S = S"
  unfolding permute_set_def
  using a by (auto simp add: swap_atom)

lemma swap_set_in:
  assumes a: "a \<in> S" "b \<notin> S" "sort_of a = sort_of b"
  shows "(a \<rightleftharpoons> b) \<bullet> S \<noteq> S"
  unfolding permute_set_def
  using a by (auto simp add: swap_atom)

lemma swap_set_in_eq:
  assumes a: "a \<in> S" "b \<notin> S" "sort_of a = sort_of b"
  shows "(a \<rightleftharpoons> b) \<bullet> S = (S - {a}) \<union> {b}"
  unfolding permute_set_def
  using a by (auto simp add: swap_atom)

lemma swap_set_both_in:
  assumes a: "a \<in> S" "b \<in> S"
  shows "(a \<rightleftharpoons> b) \<bullet> S = S"
  unfolding permute_set_def
  using a by (auto simp add: swap_atom)

lemma mem_permute_iff:
  shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
  unfolding permute_set_def
  by auto

lemma empty_eqvt:
  shows "p \<bullet> {} = {}"
  unfolding permute_set_def
  by (simp)

lemma insert_eqvt:
  shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
  unfolding permute_set_eq_image image_insert ..


subsection {* Permutations for @{typ unit} *}

instantiation unit :: pt
begin

definition "p \<bullet> (u::unit) = u"

instance 
by (default) (simp_all add: permute_unit_def)

end


subsection {* Permutations for products *}

instantiation prod :: (pt, pt) pt
begin

primrec 
  permute_prod 
where
  Pair_eqvt: "p \<bullet> (x, y) = (p \<bullet> x, p \<bullet> y)"

instance
by default auto

end

subsection {* Permutations for sums *}

instantiation sum :: (pt, pt) pt
begin

primrec 
  permute_sum 
where
  Inl_eqvt: "p \<bullet> (Inl x) = Inl (p \<bullet> x)"
| Inr_eqvt: "p \<bullet> (Inr y) = Inr (p \<bullet> y)"

instance 
by (default) (case_tac [!] x, simp_all)

end

subsection {* Permutations for @{typ "'a list"} *}

instantiation list :: (pt) pt
begin

primrec 
  permute_list 
where
  Nil_eqvt:  "p \<bullet> [] = []"
| Cons_eqvt: "p \<bullet> (x # xs) = p \<bullet> x # p \<bullet> xs"

instance 
by (default) (induct_tac [!] x, simp_all)

end

lemma set_eqvt:
  shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
  by (induct xs) (simp_all add: empty_eqvt insert_eqvt)



subsection {* Permutations for @{typ "'a option"} *}

instantiation option :: (pt) pt
begin

primrec 
  permute_option 
where
  None_eqvt: "p \<bullet> None = None"
| Some_eqvt: "p \<bullet> (Some x) = Some (p \<bullet> x)"

instance 
by (default) (induct_tac [!] x, simp_all)

end

subsection {* Permutations for @{typ "'a multiset"} *}

instantiation multiset :: (pt) pt
begin

definition
  "p \<bullet> M = {# p \<bullet> x. x :# M #}"

instance 
proof
  fix M :: "'a multiset" and p q :: "perm"
  show "0 \<bullet> M = M" 
    unfolding permute_multiset_def
    by (induct_tac M) (simp_all)
  show "(p + q) \<bullet> M = p \<bullet> q \<bullet> M" 
    unfolding permute_multiset_def
    by (induct_tac M) (simp_all)
qed

end

lemma permute_multiset [simp]:
  fixes M N::"('a::pt) multiset"
  shows "(p \<bullet> {#}) = ({#} ::('a::pt) multiset)"
  and   "(p \<bullet> {# x #}) = {# p \<bullet> x #}"
  and   "(p \<bullet> (M + N)) = (p \<bullet> M) + (p \<bullet> N)"
  unfolding permute_multiset_def
  by (simp_all)


subsection {* Permutations for @{typ "'a fset"} *}

instantiation fset :: (pt) pt
begin

quotient_definition
  "permute_fset :: perm \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
  "permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list"
  by (simp add: set_eqvt[symmetric])

instance
proof
  fix x :: "'a fset" and p q :: "perm"
  have lst: "\<And>l :: 'a list. 0 \<bullet> l = l" by simp
  show "0 \<bullet> x = x" by (lifting lst)
  have lst: "\<And>p q :: perm. \<And>x :: 'a list. (p + q) \<bullet> x = p \<bullet> q \<bullet> x" by simp
  show "(p + q) \<bullet> x = p \<bullet> q \<bullet> x" by (lifting lst)
qed

end

lemma permute_fset [simp]:
  fixes S::"('a::pt) fset"
  shows "(p \<bullet> {||}) = ({||} ::('a::pt) fset)"
  and   "(p \<bullet> insert_fset x S) = insert_fset (p \<bullet> x) (p \<bullet> S)"
  by (lifting permute_list.simps)

lemma fset_eqvt: 
  shows "p \<bullet> (fset S) = fset (p \<bullet> S)"
  by (lifting set_eqvt)


subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *}

instantiation char :: pt
begin

definition "p \<bullet> (c::char) = c"

instance 
by (default) (simp_all add: permute_char_def)

end

instantiation nat :: pt
begin

definition "p \<bullet> (n::nat) = n"

instance 
by (default) (simp_all add: permute_nat_def)

end

instantiation int :: pt
begin

definition "p \<bullet> (i::int) = i"

instance 
by (default) (simp_all add: permute_int_def)

end


section {* Pure types *}

text {* Pure types will have always empty support. *}

class pure = pt +
  assumes permute_pure: "p \<bullet> x = x"

text {* Types @{typ unit} and @{typ bool} are pure. *}

instance unit :: pure
proof qed (rule permute_unit_def)

instance bool :: pure
proof qed (rule permute_bool_def)


text {* Other type constructors preserve purity. *}

instance "fun" :: (pure, pure) pure
by default (simp add: permute_fun_def permute_pure)

instance set :: (pure) pure
by default (simp add: permute_set_def permute_pure)

instance prod :: (pure, pure) pure
by default (induct_tac x, simp add: permute_pure)

instance sum :: (pure, pure) pure
by default (induct_tac x, simp_all add: permute_pure)

instance list :: (pure) pure
by default (induct_tac x, simp_all add: permute_pure)

instance option :: (pure) pure
by default (induct_tac x, simp_all add: permute_pure)


subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *}

instance char :: pure
proof qed (rule permute_char_def)

instance nat :: pure
proof qed (rule permute_nat_def)

instance int :: pure
proof qed (rule permute_int_def)


section {* Infrastructure for Equivariance and Perm_simp *}

subsection {* Basic functions about permutations *}

use "nominal_basics.ML"


subsection {* Eqvt infrastructure *}

text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_raw} *}

use "nominal_thmdecls.ML"
setup "Nominal_ThmDecls.setup"


lemmas [eqvt] =
  (* pt types *)
  permute_prod.simps 
  permute_list.simps 
  permute_option.simps 
  permute_sum.simps

  (* sets *)
  empty_eqvt insert_eqvt set_eqvt 

  (* fsets *)
  permute_fset fset_eqvt

  (* multisets *)
  permute_multiset

subsection {* perm_simp infrastructure *}

definition
  "unpermute p = permute (- p)"

lemma eqvt_apply:
  fixes f :: "'a::pt \<Rightarrow> 'b::pt" 
  and x :: "'a::pt"
  shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)"
  unfolding permute_fun_def by simp

lemma eqvt_lambda:
  fixes f :: "'a::pt \<Rightarrow> 'b::pt"
  shows "p \<bullet> f \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))"
  unfolding permute_fun_def unpermute_def by simp

lemma eqvt_bound:
  shows "p \<bullet> unpermute p x \<equiv> x"
  unfolding unpermute_def by simp

text {* provides perm_simp methods *}

use "nominal_permeq.ML"

method_setup perm_simp =
 {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_simp_meth *}
 {* pushes permutations inside. *}

method_setup perm_strict_simp =
 {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_strict_simp_meth *}
 {* pushes permutations inside, raises an error if it cannot solve all permutations. *}


subsubsection {* Equivariance for permutations and swapping *}

lemma permute_eqvt:
  shows "p \<bullet> (q \<bullet> x) = (p \<bullet> q) \<bullet> (p \<bullet> x)"
  unfolding permute_perm_def by simp

(* the normal version of this lemma would cause loops *)
lemma permute_eqvt_raw [eqvt_raw]:
  shows "p \<bullet> permute \<equiv> permute"
apply(simp add: fun_eq_iff permute_fun_def)
apply(subst permute_eqvt)
apply(simp)
done

lemma zero_perm_eqvt [eqvt]:
  shows "p \<bullet> (0::perm) = 0"
  unfolding permute_perm_def by simp

lemma add_perm_eqvt [eqvt]:
  fixes p p1 p2 :: perm
  shows "p \<bullet> (p1 + p2) = p \<bullet> p1 + p \<bullet> p2"
  unfolding permute_perm_def
  by (simp add: perm_eq_iff)

lemma swap_eqvt [eqvt]:
  shows "p \<bullet> (a \<rightleftharpoons> b) = (p \<bullet> a \<rightleftharpoons> p \<bullet> b)"
  unfolding permute_perm_def
  by (auto simp add: swap_atom perm_eq_iff)

lemma uminus_eqvt [eqvt]:
  fixes p q::"perm"
  shows "p \<bullet> (- q) = - (p \<bullet> q)"
  unfolding permute_perm_def
  by (simp add: diff_minus minus_add add_assoc)

subsubsection {* Equivariance of Logical Operators *}

lemma eq_eqvt [eqvt]:
  shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
  unfolding permute_eq_iff permute_bool_def ..

lemma Not_eqvt [eqvt]:
  shows "p \<bullet> (\<not> A) \<longleftrightarrow> \<not> (p \<bullet> A)"
  by (simp add: permute_bool_def)

lemma conj_eqvt [eqvt]:
  shows "p \<bullet> (A \<and> B) \<longleftrightarrow> (p \<bullet> A) \<and> (p \<bullet> B)"
  by (simp add: permute_bool_def)

lemma imp_eqvt [eqvt]:
  shows "p \<bullet> (A \<longrightarrow> B) \<longleftrightarrow> (p \<bullet> A) \<longrightarrow> (p \<bullet> B)"
  by (simp add: permute_bool_def)

declare imp_eqvt[folded induct_implies_def, eqvt]

lemma all_eqvt [eqvt]:
  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
  unfolding All_def
  by (perm_simp) (rule refl)

declare all_eqvt[folded induct_forall_def, eqvt]

lemma ex_eqvt [eqvt]:
  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
  unfolding Ex_def
  by (perm_simp) (rule refl)

lemma ex1_eqvt [eqvt]:
  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
  unfolding Ex1_def
  by (perm_simp) (rule refl)

lemma if_eqvt [eqvt]:
  shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
  by (simp add: permute_fun_def permute_bool_def)

lemma True_eqvt [eqvt]:
  shows "p \<bullet> True = True"
  unfolding permute_bool_def ..

lemma False_eqvt [eqvt]:
  shows "p \<bullet> False = False"
  unfolding permute_bool_def ..

lemma disj_eqvt [eqvt]:
  shows "p \<bullet> (A \<or> B) \<longleftrightarrow> (p \<bullet> A) \<or> (p \<bullet> B)"
  by (simp add: permute_bool_def)

lemma all_eqvt2:
  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
  by (perm_simp add: permute_minus_cancel) (rule refl)

lemma ex_eqvt2:
  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
  by (perm_simp add: permute_minus_cancel) (rule refl)

lemma ex1_eqvt2:
  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
  by (perm_simp add: permute_minus_cancel) (rule refl)

lemma the_eqvt:
  assumes unique: "\<exists>!x. P x"
  shows "(p \<bullet> (THE x. P x)) = (THE x. (p \<bullet> P) x)"
  apply(rule the1_equality [symmetric])
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  apply(rule unique)
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  apply(rule theI'[OF unique])
  done

lemma the_eqvt2:
  assumes unique: "\<exists>!x. P x"
  shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))"
  apply(rule the1_equality [symmetric])
  apply(simp add: ex1_eqvt2[symmetric])
  apply(simp add: permute_bool_def unique)
  apply(simp add: permute_bool_def)
  apply(rule theI'[OF unique])
  done

subsubsection {* Equivariance of Set operators *}

lemma mem_eqvt [eqvt]:
  shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
  unfolding permute_bool_def permute_set_def
  by (auto)

lemma Collect_eqvt [eqvt]:
  shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
  unfolding permute_set_eq permute_fun_def
  by (auto simp add: permute_bool_def)

lemma inter_eqvt [eqvt]:
  shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
  unfolding Int_def
  by (perm_simp) (rule refl)

lemma Bex_eqvt [eqvt]:
  shows "p \<bullet> (\<exists>x \<in> S. P x) = (\<exists>x \<in> (p \<bullet> S). (p \<bullet> P) x)"
  unfolding Bex_def
  by (perm_simp) (rule refl)

lemma Ball_eqvt [eqvt]:
  shows "p \<bullet> (\<forall>x \<in> S. P x) = (\<forall>x \<in> (p \<bullet> S). (p \<bullet> P) x)"
  unfolding Ball_def
  by (perm_simp) (rule refl)

lemma image_eqvt [eqvt]:
  shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
  unfolding image_def
  by (perm_simp) (rule refl)

lemma Image_eqvt [eqvt]:
  shows "p \<bullet> (R `` A) = (p \<bullet> R) `` (p \<bullet> A)"
  unfolding Image_def
  by (perm_simp) (rule refl)

lemma UNIV_eqvt [eqvt]:
  shows "p \<bullet> UNIV = UNIV"
  unfolding UNIV_def
  by (perm_simp) (rule refl)

lemma union_eqvt [eqvt]:
  shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
  unfolding Un_def
  by (perm_simp) (rule refl)

lemma Diff_eqvt [eqvt]:
  fixes A B :: "'a::pt set"
  shows "p \<bullet> (A - B) = (p \<bullet> A) - (p \<bullet> B)"
  unfolding set_diff_eq
  by (perm_simp) (rule refl)

lemma Compl_eqvt [eqvt]:
  fixes A :: "'a::pt set"
  shows "p \<bullet> (- A) = - (p \<bullet> A)"
  unfolding Compl_eq_Diff_UNIV
  by (perm_simp) (rule refl)

lemma subset_eqvt [eqvt]:
  shows "p \<bullet> (S \<subseteq> T) \<longleftrightarrow> (p \<bullet> S) \<subseteq> (p \<bullet> T)"
  unfolding subset_eq
  by (perm_simp) (rule refl)

lemma psubset_eqvt [eqvt]:
  shows "p \<bullet> (S \<subset> T) \<longleftrightarrow> (p \<bullet> S) \<subset> (p \<bullet> T)"
  unfolding psubset_eq
  by (perm_simp) (rule refl)

lemma vimage_eqvt [eqvt]:
  shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
  unfolding vimage_def
  by (perm_simp) (rule refl)

lemma Union_eqvt [eqvt]:
  shows "p \<bullet> (\<Union> S) = \<Union> (p \<bullet> S)"
  unfolding Union_eq 
  by (perm_simp) (rule refl)

lemma Inter_eqvt [eqvt]:
  shows "p \<bullet> (\<Inter> S) = \<Inter> (p \<bullet> S)"
  unfolding Inter_eq 
  by (perm_simp) (rule refl)

lemma foldr_eqvt[eqvt]:
  "p \<bullet> foldr a b c = foldr (p \<bullet> a) (p \<bullet> b) (p \<bullet> c)"
  apply (induct b)
  apply simp_all
  apply (perm_simp)
  apply simp
  done

(* FIXME: eqvt attribute *)
lemma Sigma_eqvt:
  shows "(p \<bullet> (X \<times> Y)) = (p \<bullet> X) \<times> (p \<bullet> Y)"
unfolding Sigma_def
unfolding SUP_def
by (perm_simp) (rule refl)

text {* 
  In order to prove that lfp is equivariant we need two
  auxiliary classes which specify that (op <=) and
  Inf are equivariant. Instances for bool and fun are 
  given.
*}

class le_eqvt =  order + 
  assumes le_eqvt [eqvt]: "p \<bullet> (x \<le> y) = ((p \<bullet> x) \<le> (p \<bullet> (y::('a::{pt, order}))))"

class inf_eqvt = complete_lattice +
  assumes inf_eqvt [eqvt]: "p \<bullet> (Inf X) = Inf (p \<bullet> (X::('a::{pt, Inf}) set))"

instantiation bool :: le_eqvt
begin

instance 
apply(default)
apply perm_simp
apply(rule refl)
done

end

instantiation "fun" :: (pt, le_eqvt) le_eqvt
begin

instance 
apply(default)
unfolding le_fun_def
apply(perm_simp)
apply(rule refl)
done 

end

instantiation bool :: inf_eqvt
begin

instance 
apply(default)
apply(perm_simp)
apply(rule refl)
done

end

instantiation "fun" :: (pt, inf_eqvt) inf_eqvt
begin

instance 
apply(default)
unfolding Inf_fun_def INF_def
apply(perm_simp)
apply(rule refl)
done 

end

lemma lfp_eqvt [eqvt]:
  fixes F::"('a \<Rightarrow> 'b) \<Rightarrow> ('a::pt \<Rightarrow> 'b::{inf_eqvt, le_eqvt})"
  shows "p \<bullet> (lfp F) = lfp (p \<bullet> F)"
unfolding lfp_def
by (perm_simp) (rule refl)

lemma finite_eqvt [eqvt]:
  shows "p \<bullet> finite A = finite (p \<bullet> A)"
unfolding finite_def
by (perm_simp) (rule refl)

lemma Let_eqvt [eqvt]:
  "p \<bullet> Let x y = Let (p \<bullet> x) (p \<bullet> y)"
  unfolding Let_def permute_fun_app_eq ..

subsubsection {* Equivariance for product operations *}

lemma fst_eqvt [eqvt]:
  shows "p \<bullet> (fst x) = fst (p \<bullet> x)"
  by (cases x) simp

lemma snd_eqvt [eqvt]:
  shows "p \<bullet> (snd x) = snd (p \<bullet> x)"
  by (cases x) simp

lemma split_eqvt [eqvt]: 
  shows "p \<bullet> (split P x) = split (p \<bullet> P) (p \<bullet> x)"
  unfolding split_def
  by (perm_simp) (rule refl)


subsubsection {* Equivariance for list operations *}

lemma append_eqvt [eqvt]:
  shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
  by (induct xs) auto

lemma rev_eqvt [eqvt]:
  shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
  by (induct xs) (simp_all add: append_eqvt)

lemma map_eqvt [eqvt]: 
  shows "p \<bullet> (map f xs) = map (p \<bullet> f) (p \<bullet> xs)"
  by (induct xs) (simp_all, simp only: permute_fun_app_eq)

lemma removeAll_eqvt [eqvt]:
  shows "p \<bullet> (removeAll x xs) = removeAll (p \<bullet> x) (p \<bullet> xs)"
  by (induct xs) (auto)

lemma filter_eqvt [eqvt]:
  shows "p \<bullet> (filter f xs) = filter (p \<bullet> f) (p \<bullet> xs)"
apply(induct xs)
apply(simp)
apply(simp only: filter.simps permute_list.simps if_eqvt)
apply(simp only: permute_fun_app_eq)
done

lemma distinct_eqvt [eqvt]:
  shows "p \<bullet> (distinct xs) = distinct (p \<bullet> xs)"
apply(induct xs)
apply(simp add: permute_bool_def)
apply(simp add: conj_eqvt Not_eqvt mem_eqvt set_eqvt)
done

lemma length_eqvt [eqvt]:
  shows "p \<bullet> (length xs) = length (p \<bullet> xs)"
by (induct xs) (simp_all add: permute_pure)


subsubsection {* Equivariance for @{typ "'a option"} *}

lemma option_map_eqvt[eqvt]:
  shows "p \<bullet> (Option.map f x) = Option.map (p \<bullet> f) (p \<bullet> x)"
  by (cases x) (simp_all, simp add: permute_fun_app_eq)


subsubsection {* Equivariance for @{typ "'a fset"} *}

lemma in_fset_eqvt [eqvt]:
  shows "(p \<bullet> (x |\<in>| S)) = ((p \<bullet> x) |\<in>| (p \<bullet> S))"
unfolding in_fset
by (perm_simp) (simp)

lemma union_fset_eqvt [eqvt]:
  shows "(p \<bullet> (S |\<union>| T)) = ((p \<bullet> S) |\<union>| (p \<bullet> T))"
  by (induct S) (simp_all)

lemma inter_list_eqvt [eqvt]:
  shows "p \<bullet> (inter_list S T) = inter_list (p \<bullet> S) (p \<bullet> T)"
  unfolding list_eq_def inter_list_def
  by perm_simp simp

lemma inter_fset_eqvt [eqvt]:
  shows "(p \<bullet> (S |\<inter>| T)) = ((p \<bullet> S) |\<inter>| (p \<bullet> T))"
  by (lifting inter_list_eqvt)

lemma sub_list_eqvt [eqvt]:
  shows "p \<bullet> (sub_list S T) = sub_list (p \<bullet> S) (p \<bullet> T)"
  unfolding sub_list_def
  by perm_simp simp

lemma subset_fset_eqvt [eqvt]:
  shows "(p \<bullet> (S |\<subseteq>| T)) = ((p \<bullet> S) |\<subseteq>| (p \<bullet> T))"
  by (lifting sub_list_eqvt)
  
lemma map_fset_eqvt [eqvt]: 
  shows "p \<bullet> (map_fset f S) = map_fset (p \<bullet> f) (p \<bullet> S)"
  by (lifting map_eqvt)


section {* Supp, Freshness and Supports *}

context pt
begin

definition
  supp :: "'a \<Rightarrow> atom set"
where
  "supp x = {a. infinite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}}"

definition
  fresh :: "atom \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [55, 55] 55)
where   
  "a \<sharp> x \<equiv> a \<notin> supp x"

end

lemma supp_conv_fresh: 
  shows "supp x = {a. \<not> a \<sharp> x}"
  unfolding fresh_def by simp

lemma swap_rel_trans:
  assumes "sort_of a = sort_of b"
  assumes "sort_of b = sort_of c"
  assumes "(a \<rightleftharpoons> c) \<bullet> x = x"
  assumes "(b \<rightleftharpoons> c) \<bullet> x = x"
  shows "(a \<rightleftharpoons> b) \<bullet> x = x"
proof (cases)
  assume "a = b \<or> c = b"
  with assms show "(a \<rightleftharpoons> b) \<bullet> x = x" by auto
next
  assume *: "\<not> (a = b \<or> c = b)"
  have "((a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c)) \<bullet> x = x"
    using assms by simp
  also have "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)"
    using assms * by (simp add: swap_triple)
  finally show "(a \<rightleftharpoons> b) \<bullet> x = x" .
qed

lemma swap_fresh_fresh:
  assumes a: "a \<sharp> x" 
  and     b: "b \<sharp> x"
  shows "(a \<rightleftharpoons> b) \<bullet> x = x"
proof (cases)
  assume asm: "sort_of a = sort_of b" 
  have "finite {c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x}" "finite {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x}" 
    using a b unfolding fresh_def supp_def by simp_all
  then have "finite ({c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x} \<union> {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x})" by simp
  then obtain c 
    where "(a \<rightleftharpoons> c) \<bullet> x = x" "(b \<rightleftharpoons> c) \<bullet> x = x" "sort_of c = sort_of b"
    by (rule obtain_atom) (auto)
  then show "(a \<rightleftharpoons> b) \<bullet> x = x" using asm by (rule_tac swap_rel_trans) (simp_all)
next
  assume "sort_of a \<noteq> sort_of b"
  then show "(a \<rightleftharpoons> b) \<bullet> x = x" by simp
qed


subsection {* supp and fresh are equivariant *}


lemma supp_eqvt [eqvt]:
  shows "p \<bullet> (supp x) = supp (p \<bullet> x)"
  unfolding supp_def
  by (perm_simp)
     (simp only: permute_eqvt[symmetric])

lemma fresh_eqvt [eqvt]:
  shows "p \<bullet> (a \<sharp> x) = (p \<bullet> a) \<sharp> (p \<bullet> x)"
  unfolding fresh_def
  by (perm_simp) (rule refl)

lemma fresh_permute_iff:
  shows "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> a \<sharp> x"
  by (simp only: fresh_eqvt[symmetric] permute_bool_def)

lemma fresh_permute_left:
  shows "a \<sharp> p \<bullet> x \<longleftrightarrow> - p \<bullet> a \<sharp> x"
proof
  assume "a \<sharp> p \<bullet> x"
  then have "- p \<bullet> a \<sharp> - p \<bullet> p \<bullet> x" by (simp only: fresh_permute_iff)
  then show "- p \<bullet> a \<sharp> x" by simp
next
  assume "- p \<bullet> a \<sharp> x"
  then have "p \<bullet> - p \<bullet> a \<sharp> p \<bullet> x" by (simp only: fresh_permute_iff)
  then show "a \<sharp> p \<bullet> x" by simp
qed


section {* supports *}

definition
  supports :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" (infixl "supports" 80)
where  
  "S supports x \<equiv> \<forall>a b. (a \<notin> S \<and> b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x)"

lemma supp_is_subset:
  fixes S :: "atom set"
  and   x :: "'a::pt"
  assumes a1: "S supports x"
  and     a2: "finite S"
  shows "(supp x) \<subseteq> S"
proof (rule ccontr)
  assume "\<not> (supp x \<subseteq> S)"
  then obtain a where b1: "a \<in> supp x" and b2: "a \<notin> S" by auto
  from a1 b2 have "\<forall>b. b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x" unfolding supports_def by auto
  then have "{b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x} \<subseteq> S" by auto
  with a2 have "finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}" by (simp add: finite_subset)
  then have "a \<notin> (supp x)" unfolding supp_def by simp
  with b1 show False by simp
qed

lemma supports_finite:
  fixes S :: "atom set"
  and   x :: "'a::pt"
  assumes a1: "S supports x"
  and     a2: "finite S"
  shows "finite (supp x)"
proof -
  have "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
  then show "finite (supp x)" using a2 by (simp add: finite_subset)
qed

lemma supp_supports:
  fixes x :: "'a::pt"
  shows "(supp x) supports x"
unfolding supports_def
proof (intro strip)
  fix a b
  assume "a \<notin> (supp x) \<and> b \<notin> (supp x)"
  then have "a \<sharp> x" and "b \<sharp> x" by (simp_all add: fresh_def)
  then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh)
qed

lemma supports_fresh:
  fixes x :: "'a::pt"
  assumes a1: "S supports x"
  and     a2: "finite S"
  and     a3: "a \<notin> S"
  shows "a \<sharp> x"
unfolding fresh_def
proof -
  have "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
  then show "a \<notin> (supp x)" using a3 by auto
qed

lemma supp_is_least_supports:
  fixes S :: "atom set"
  and   x :: "'a::pt"
  assumes  a1: "S supports x"
  and      a2: "finite S"
  and      a3: "\<And>S'. finite S' \<Longrightarrow> (S' supports x) \<Longrightarrow> S \<subseteq> S'"
  shows "(supp x) = S"
proof (rule equalityI)
  show "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
  with a2 have fin: "finite (supp x)" by (rule rev_finite_subset)
  have "(supp x) supports x" by (rule supp_supports)
  with fin a3 show "S \<subseteq> supp x" by blast
qed


lemma subsetCI: 
  shows "(\<And>x. x \<in> A \<Longrightarrow> x \<notin> B \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> B"
  by auto

lemma finite_supp_unique:
  assumes a1: "S supports x"
  assumes a2: "finite S"
  assumes a3: "\<And>a b. \<lbrakk>a \<in> S; b \<notin> S; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x \<noteq> x"
  shows "(supp x) = S"
  using a1 a2
proof (rule supp_is_least_supports)
  fix S'
  assume "finite S'" and "S' supports x"
  show "S \<subseteq> S'"
  proof (rule subsetCI)
    fix a
    assume "a \<in> S" and "a \<notin> S'"
    have "finite (S \<union> S')"
      using `finite S` `finite S'` by simp
    then obtain b where "b \<notin> S \<union> S'" and "sort_of b = sort_of a"
      by (rule obtain_atom)
    then have "b \<notin> S" and "b \<notin> S'"  and "sort_of a = sort_of b"
      by simp_all
    then have "(a \<rightleftharpoons> b) \<bullet> x = x"
      using `a \<notin> S'` `S' supports x` by (simp add: supports_def)
    moreover have "(a \<rightleftharpoons> b) \<bullet> x \<noteq> x"
      using `a \<in> S` `b \<notin> S` `sort_of a = sort_of b`
      by (rule a3)
    ultimately show "False" by simp
  qed
qed

section {* Support w.r.t. relations *}

text {* 
  This definition is used for unquotient types, where
  alpha-equivalence does not coincide with equality.
*}

definition 
  "supp_rel R x = {a. infinite {b. \<not>(R ((a \<rightleftharpoons> b) \<bullet> x) x)}}"



section {* Finitely-supported types *}

class fs = pt +
  assumes finite_supp: "finite (supp x)"

lemma pure_supp: 
  fixes x::"'a::pure"
  shows "supp x = {}"
  unfolding supp_def by (simp add: permute_pure)

lemma pure_fresh:
  fixes x::"'a::pure"
  shows "a \<sharp> x"
  unfolding fresh_def by (simp add: pure_supp)

instance pure < fs
by default (simp add: pure_supp)


subsection  {* Type @{typ atom} is finitely-supported. *}

lemma supp_atom:
  shows "supp a = {a}"
  by (rule finite_supp_unique)
     (auto simp add: supports_def)

lemma fresh_atom: 
  shows "a \<sharp> b \<longleftrightarrow> a \<noteq> b"
  unfolding fresh_def supp_atom by simp

instance atom :: fs
by default (simp add: supp_atom)


section {* Type @{typ perm} is finitely-supported. *}

lemma perm_swap_eq:
  shows "(a \<rightleftharpoons> b) \<bullet> p = p \<longleftrightarrow> (p \<bullet> (a \<rightleftharpoons> b)) = (a \<rightleftharpoons> b)"
unfolding permute_perm_def
by (metis add_diff_cancel minus_perm_def)

lemma supports_perm: 
  shows "{a. p \<bullet> a \<noteq> a} supports p"
  unfolding supports_def
  unfolding perm_swap_eq
  by (simp add: swap_eqvt)

lemma finite_perm_lemma:
  shows "finite {a::atom. p \<bullet> a \<noteq> a}"
  unfolding permute_atom_def
  using finite_gpermute_neq .

lemma supp_perm:
  shows "supp p = {a. p \<bullet> a \<noteq> a}"
apply (rule finite_supp_unique)
apply (simp_all add: perm_swap_eq swap_eqvt supports_perm finite_perm_lemma)
apply (auto simp add: perm_eq_iff swap_atom perm_swap_eq swap_eqvt)
done

lemma fresh_perm: 
  shows "a \<sharp> p \<longleftrightarrow> p \<bullet> a = a"
  unfolding fresh_def 
  by (simp add: supp_perm)

lemma supp_swap:
  shows "supp (a \<rightleftharpoons> b) = (if a = b \<or> sort_of a \<noteq> sort_of b then {} else {a, b})"
  by (auto simp add: supp_perm swap_atom)

lemma fresh_zero_perm: 
  shows "a \<sharp> (0::perm)"
  unfolding fresh_perm by simp

lemma supp_zero_perm: 
  shows "supp (0::perm) = {}"
  unfolding supp_perm by simp

lemma fresh_plus_perm:
  fixes p q::perm
  assumes "a \<sharp> p" "a \<sharp> q"
  shows "a \<sharp> (p + q)"
  using assms
  unfolding fresh_def
  by (auto simp add: supp_perm)

lemma supp_plus_perm:
  fixes p q::perm
  shows "supp (p + q) \<subseteq> supp p \<union> supp q"
  by (auto simp add: supp_perm)

lemma fresh_minus_perm:
  fixes p::perm
  shows "a \<sharp> (- p) \<longleftrightarrow> a \<sharp> p"
  unfolding fresh_def supp_perm
  by (simp) (metis permute_minus_cancel(1))

lemma supp_minus_perm:
  fixes p::perm
  shows "supp (- p) = supp p"
  unfolding supp_conv_fresh
  by (simp add: fresh_minus_perm)

lemma plus_perm_eq:
  fixes p q::"perm"
  assumes asm: "supp p \<inter> supp q = {}"
  shows "p + q = q + p"
unfolding perm_eq_iff
proof
  fix a::"atom"
  show "(p + q) \<bullet> a = (q + p) \<bullet> a"
  proof -
    { assume "a \<notin> supp p" "a \<notin> supp q"
      then have "(p + q) \<bullet> a = (q + p) \<bullet> a" 
	by (simp add: supp_perm)
    }
    moreover
    { assume a: "a \<in> supp p" "a \<notin> supp q"
      then have "p \<bullet> a \<in> supp p" by (simp add: supp_perm)
      then have "p \<bullet> a \<notin> supp q" using asm by auto
      with a have "(p + q) \<bullet> a = (q + p) \<bullet> a" 
	by (simp add: supp_perm)
    }
    moreover
    { assume a: "a \<notin> supp p" "a \<in> supp q"
      then have "q \<bullet> a \<in> supp q" by (simp add: supp_perm)
      then have "q \<bullet> a \<notin> supp p" using asm by auto 
      with a have "(p + q) \<bullet> a = (q + p) \<bullet> a" 
	by (simp add: supp_perm)
    }
    ultimately show "(p + q) \<bullet> a = (q + p) \<bullet> a" 
      using asm by blast
  qed
qed

lemma supp_plus_perm_eq:
  fixes p q::perm
  assumes asm: "supp p \<inter> supp q = {}"
  shows "supp (p + q) = supp p \<union> supp q"
proof -
  { fix a::"atom"
    assume "a \<in> supp p"
    then have "a \<notin> supp q" using asm by auto
    then have "a \<in> supp (p + q)" using `a \<in> supp p` 
      by (simp add: supp_perm)
  }
  moreover
  { fix a::"atom"
    assume "a \<in> supp q"
    then have "a \<notin> supp p" using asm by auto
    then have "a \<in> supp (q + p)" using `a \<in> supp q` 
      by (simp add: supp_perm)
    then have "a \<in> supp (p + q)" using asm plus_perm_eq
      by metis
  }
  ultimately have "supp p \<union> supp q \<subseteq> supp (p + q)"
    by blast
  then show "supp (p + q) = supp p \<union> supp q" using supp_plus_perm
    by blast
qed

instance perm :: fs
by default (simp add: supp_perm finite_perm_lemma)



section {* Finite Support instances for other types *}


subsection {* Type @{typ "'a \<times> 'b"} is finitely-supported. *}

lemma supp_Pair: 
  shows "supp (x, y) = supp x \<union> supp y"
  by (simp add: supp_def Collect_imp_eq Collect_neg_eq)

lemma fresh_Pair: 
  shows "a \<sharp> (x, y) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> y"
  by (simp add: fresh_def supp_Pair)

lemma supp_Unit:
  shows "supp () = {}"
  by (simp add: supp_def)

lemma fresh_Unit:
  shows "a \<sharp> ()"
  by (simp add: fresh_def supp_Unit)

instance prod :: (fs, fs) fs
  by default (auto simp add: supp_Pair finite_supp)


subsection {* Type @{typ "'a + 'b"} is finitely supported *}

lemma supp_Inl: 
  shows "supp (Inl x) = supp x"
  by (simp add: supp_def)

lemma supp_Inr: 
  shows "supp (Inr x) = supp x"
  by (simp add: supp_def)

lemma fresh_Inl: 
  shows "a \<sharp> Inl x \<longleftrightarrow> a \<sharp> x"
  by (simp add: fresh_def supp_Inl)

lemma fresh_Inr: 
  shows "a \<sharp> Inr y \<longleftrightarrow> a \<sharp> y"
  by (simp add: fresh_def supp_Inr)

instance sum :: (fs, fs) fs
apply default
apply (case_tac x)
apply (simp_all add: supp_Inl supp_Inr finite_supp)
done


subsection {* Type @{typ "'a option"} is finitely supported *}

lemma supp_None: 
  shows "supp None = {}"
by (simp add: supp_def)

lemma supp_Some: 
  shows "supp (Some x) = supp x"
  by (simp add: supp_def)

lemma fresh_None: 
  shows "a \<sharp> None"
  by (simp add: fresh_def supp_None)

lemma fresh_Some: 
  shows "a \<sharp> Some x \<longleftrightarrow> a \<sharp> x"
  by (simp add: fresh_def supp_Some)

instance option :: (fs) fs
apply default
apply (induct_tac x)
apply (simp_all add: supp_None supp_Some finite_supp)
done


subsubsection {* Type @{typ "'a list"} is finitely supported *}

lemma supp_Nil: 
  shows "supp [] = {}"
  by (simp add: supp_def)

lemma fresh_Nil: 
  shows "a \<sharp> []"
  by (simp add: fresh_def supp_Nil)

lemma supp_Cons: 
  shows "supp (x # xs) = supp x \<union> supp xs"
by (simp add: supp_def Collect_imp_eq Collect_neg_eq)

lemma fresh_Cons: 
  shows "a \<sharp> (x # xs) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> xs"
  by (simp add: fresh_def supp_Cons)

lemma supp_append:
  shows "supp (xs @ ys) = supp xs \<union> supp ys"
  by (induct xs) (auto simp add: supp_Nil supp_Cons)

lemma fresh_append:
  shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
  by (induct xs) (simp_all add: fresh_Nil fresh_Cons)

lemma supp_rev:
  shows "supp (rev xs) = supp xs"
  by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)

lemma fresh_rev:
  shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
  by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)

lemma supp_removeAll:
  fixes x::"atom"
  shows "supp (removeAll x xs) = supp xs - {x}"
  by (induct xs)
     (auto simp add: supp_Nil supp_Cons supp_atom)

lemma supp_of_atom_list:
  fixes as::"atom list"
  shows "supp as = set as"
by (induct as)
   (simp_all add: supp_Nil supp_Cons supp_atom)

instance list :: (fs) fs
apply default
apply (induct_tac x)
apply (simp_all add: supp_Nil supp_Cons finite_supp)
done


section {* Support and Freshness for Applications *}

lemma fresh_conv_MOST: 
  shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)"
  unfolding fresh_def supp_def 
  unfolding MOST_iff_cofinite by simp

lemma fresh_fun_app:
  assumes "a \<sharp> f" and "a \<sharp> x" 
  shows "a \<sharp> f x"
  using assms
  unfolding fresh_conv_MOST
  unfolding permute_fun_app_eq
  by (elim MOST_rev_mp) (simp)

lemma supp_fun_app:
  shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)"
  using fresh_fun_app
  unfolding fresh_def
  by auto


subsection {* Equivariance Predicate @{text eqvt} and @{text eqvt_at}*}

definition
  "eqvt f \<equiv> \<forall>p. p \<bullet> f = f"

lemma eqvt_boolI:
  fixes f::"bool"
  shows "eqvt f"
  unfolding eqvt_def
  by (simp add: permute_bool_def)


text {* equivariance of a function at a given argument *}

definition
 "eqvt_at f x \<equiv> \<forall>p. p \<bullet> (f x) = f (p \<bullet> x)"

lemma eqvtI:
  shows "(\<And>p. p \<bullet> f \<equiv> f) \<Longrightarrow> eqvt f"
unfolding eqvt_def
by simp

lemma eqvt_at_perm:
  assumes "eqvt_at f x"
  shows "eqvt_at f (q \<bullet> x)"
proof -
  { fix p::"perm"
    have "p \<bullet> (f (q \<bullet> x)) = p \<bullet> q \<bullet> (f x)"
      using assms by (simp add: eqvt_at_def)
    also have "\<dots> = (p + q) \<bullet> (f x)" by simp
    also have "\<dots> = f ((p + q) \<bullet> x)"
      using assms by (simp add: eqvt_at_def)
    finally have "p \<bullet> (f (q \<bullet> x)) = f (p \<bullet> q \<bullet> x)" by simp } 
  then show "eqvt_at f (q \<bullet> x)" unfolding eqvt_at_def
    by simp
qed

lemma supp_fun_eqvt:
  assumes a: "eqvt f"
  shows "supp f = {}"
  using a
  unfolding eqvt_def
  unfolding supp_def 
  by simp

lemma fresh_fun_eqvt_app:
  assumes a: "eqvt f"
  shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
proof -
  from a have "supp f = {}" by (simp add: supp_fun_eqvt)
  then show "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
    unfolding fresh_def
    using supp_fun_app by auto
qed

lemma supp_fun_app_eqvt:
  assumes a: "eqvt f"
  shows "supp (f x) \<subseteq> supp x"
  using fresh_fun_eqvt_app[OF a]
  unfolding fresh_def
  by auto

lemma supp_eqvt_at:
  assumes asm: "eqvt_at f x"
  and     fin: "finite (supp x)"
  shows "supp (f x) \<subseteq> supp x"
apply(rule supp_is_subset)
unfolding supports_def
unfolding fresh_def[symmetric]
using asm
apply(simp add: eqvt_at_def swap_fresh_fresh)
apply(rule fin)
done

lemma finite_supp_eqvt_at:
  assumes asm: "eqvt_at f x"
  and     fin: "finite (supp x)"
  shows "finite (supp (f x))"
apply(rule finite_subset)
apply(rule supp_eqvt_at[OF asm fin])
apply(rule fin)
done

lemma fresh_eqvt_at:
  assumes asm: "eqvt_at f x"
  and     fin: "finite (supp x)"
  and     fresh: "a \<sharp> x"
  shows "a \<sharp> f x"
using fresh
unfolding fresh_def
using supp_eqvt_at[OF asm fin]
by auto


subsection {* helper functions for nominal_functions *}

lemma THE_defaultI2:
  assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x"
  shows "Q (THE_default d P)"
by (iprover intro: assms THE_defaultI')

lemma the_default_eqvt:
  assumes unique: "\<exists>!x. P x"
  shows "(p \<bullet> (THE_default d P)) = (THE_default (p \<bullet> d) (p \<bullet> P))"
  apply(rule THE_default1_equality [symmetric])
  apply(rule_tac p="-p" in permute_boolE)
  apply(simp add: ex1_eqvt)
  apply(rule unique)
  apply(rule_tac p="-p" in permute_boolE)
  apply(rule subst[OF permute_fun_app_eq])
  apply(simp)
  apply(rule THE_defaultI'[OF unique])
  done

lemma fundef_ex1_eqvt:
  fixes x::"'a::pt"
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (G x))"
  assumes eqvt: "eqvt G"
  assumes ex1: "\<exists>!y. G x y"
  shows "(p \<bullet> (f x)) = f (p \<bullet> x)"
  apply(simp only: f_def)
  apply(subst the_default_eqvt)
  apply(rule ex1)
  apply(rule THE_default1_equality [symmetric])
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  using eqvt[simplified eqvt_def]
  apply(simp)
  apply(rule ex1)
  apply(rule THE_defaultI2) 
  apply(rule_tac p="-p" in permute_boolE)
  apply(perm_simp add: permute_minus_cancel)
  apply(rule ex1)
  apply(perm_simp)
  using eqvt[simplified eqvt_def]
  apply(simp)
  done

lemma fundef_ex1_eqvt_at:
  fixes x::"'a::pt"
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (G x))"
  assumes eqvt: "eqvt G"
  assumes ex1: "\<exists>!y. G x y"
  shows "eqvt_at f x"
  unfolding eqvt_at_def
  using assms
  by (auto intro: fundef_ex1_eqvt)

lemma fundef_ex1_prop:
  fixes x::"'a::pt"
  assumes f_def: "f \<equiv> (\<lambda>x::'a. THE_default (d x) (G x))"
  assumes P_all: "\<And>x y. G x y \<Longrightarrow> P x y"
  assumes ex1: "\<exists>!y. G x y"
  shows "P x (f x)"
  unfolding f_def
  using ex1
  apply(erule_tac ex1E)
  apply(rule THE_defaultI2)
  apply(blast)
  apply(rule P_all)
  apply(assumption)
  done


section {* Support of Finite Sets of Finitely Supported Elements *}

text {* support and freshness for atom sets *}

lemma supp_finite_atom_set:
  fixes S::"atom set"
  assumes "finite S"
  shows "supp S = S"
  apply(rule finite_supp_unique)
  apply(simp add: supports_def)
  apply(simp add: swap_set_not_in)
  apply(rule assms)
  apply(simp add: swap_set_in)
done

lemma supp_cofinite_atom_set:
  fixes S::"atom set"
  assumes "finite (UNIV - S)"
  shows "supp S = (UNIV - S)"
  apply(rule finite_supp_unique)
  apply(simp add: supports_def)
  apply(simp add: swap_set_both_in)
  apply(rule assms)
  apply(subst swap_commute)
  apply(simp add: swap_set_in)
done

lemma fresh_finite_atom_set:
  fixes S::"atom set"
  assumes "finite S"
  shows "a \<sharp> S \<longleftrightarrow> a \<notin> S"
  unfolding fresh_def
  by (simp add: supp_finite_atom_set[OF assms])

lemma fresh_minus_atom_set:
  fixes S::"atom set"
  assumes "finite S"
  shows "a \<sharp> S - T \<longleftrightarrow> (a \<notin> T \<longrightarrow> a \<sharp> S)"
  unfolding fresh_def
  by (auto simp add: supp_finite_atom_set assms)

lemma Union_supports_set:
  shows "(\<Union>x \<in> S. supp x) supports S"
proof -
  { fix a b
    have "\<forall>x \<in> S. (a \<rightleftharpoons> b) \<bullet> x = x \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> S = S"
      unfolding permute_set_def by force
  }
  then show "(\<Union>x \<in> S. supp x) supports S"
    unfolding supports_def 
    by (simp add: fresh_def[symmetric] swap_fresh_fresh)
qed

lemma Union_of_finite_supp_sets:
  fixes S::"('a::fs set)"
  assumes fin: "finite S"   
  shows "finite (\<Union>x\<in>S. supp x)"
  using fin by (induct) (auto simp add: finite_supp)

lemma Union_included_in_supp:
  fixes S::"('a::fs set)"
  assumes fin: "finite S"
  shows "(\<Union>x\<in>S. supp x) \<subseteq> supp S"
proof -
  have eqvt: "eqvt (\<lambda>S. \<Union> supp ` S)" 
    unfolding eqvt_def
    by (perm_simp) (simp)
  have "(\<Union>x\<in>S. supp x) = supp (\<Union>x\<in>S. supp x)"
    by (rule supp_finite_atom_set[symmetric]) (rule Union_of_finite_supp_sets[OF fin])
  also have "\<dots> = supp ((\<lambda>S. \<Union> supp ` S) S)" by simp
  also have "\<dots> \<subseteq> supp S" using eqvt
    by (rule supp_fun_app_eqvt)
  finally show "(\<Union>x\<in>S. supp x) \<subseteq> supp S" .
qed

lemma supp_of_finite_sets:
  fixes S::"('a::fs set)"
  assumes fin: "finite S"
  shows "(supp S) = (\<Union>x\<in>S. supp x)"
apply(rule subset_antisym)
apply(rule supp_is_subset)
apply(rule Union_supports_set)
apply(rule Union_of_finite_supp_sets[OF fin])
apply(rule Union_included_in_supp[OF fin])
done

lemma finite_sets_supp:
  fixes S::"('a::fs set)"
  assumes "finite S"
  shows "finite (supp S)"
using assms
by (simp only: supp_of_finite_sets Union_of_finite_supp_sets)

lemma supp_of_finite_union:
  fixes S T::"('a::fs) set"
  assumes fin1: "finite S"
  and     fin2: "finite T"
  shows "supp (S \<union> T) = supp S \<union> supp T"
  using fin1 fin2
  by (simp add: supp_of_finite_sets)

lemma supp_of_finite_insert:
  fixes S::"('a::fs) set"
  assumes fin:  "finite S"
  shows "supp (insert x S) = supp x \<union> supp S"
  using fin
  by (simp add: supp_of_finite_sets)

lemma fresh_finite_insert:
  fixes S::"('a::fs) set"
  assumes fin:  "finite S"
  shows "a \<sharp> (insert x S) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> S"
  using fin unfolding fresh_def
  by (simp add: supp_of_finite_insert)

lemma supp_set_empty:
  shows "supp {} = {}"
  unfolding supp_def
  by (simp add: empty_eqvt)

lemma fresh_set_empty:
  shows "a \<sharp> {}"
  by (simp add: fresh_def supp_set_empty)

lemma supp_set:
  fixes xs :: "('a::fs) list"
  shows "supp (set xs) = supp xs"
apply(induct xs)
apply(simp add: supp_set_empty supp_Nil)
apply(simp add: supp_Cons supp_of_finite_insert)
done

lemma fresh_set:
  fixes xs :: "('a::fs) list"
  shows "a \<sharp> (set xs) \<longleftrightarrow> a \<sharp> xs"
unfolding fresh_def
by (simp add: supp_set)


subsection {* Type @{typ "'a multiset"} is finitely supported *}

lemma set_of_eqvt[eqvt]:
  shows "p \<bullet> (set_of M) = set_of (p \<bullet> M)"
by (induct M) (simp_all add: insert_eqvt empty_eqvt)

lemma supp_set_of:
  shows "supp (set_of M) \<subseteq> supp M"
  apply (rule supp_fun_app_eqvt)
  unfolding eqvt_def
  apply(perm_simp)
  apply(simp)
  done

lemma Union_finite_multiset:
  fixes M::"'a::fs multiset"
  shows "finite (\<Union>{supp x | x. x \<in># M})"
proof - 
  have "finite (\<Union>(supp ` {x. x \<in># M}))"
    by (induct M) (simp_all add: Collect_imp_eq Collect_neg_eq finite_supp)
  then show "finite (\<Union>{supp x | x. x \<in># M})"
    by (simp only: image_Collect)
qed

lemma Union_supports_multiset:
  shows "\<Union>{supp x | x. x :# M} supports M"
proof -
  have sw: "\<And>a b. ((\<And>x. x :# M \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x) \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> M = M)"
    unfolding permute_multiset_def 
    apply(induct M)
    apply(simp_all)
    done
  show "(\<Union>{supp x | x. x :# M}) supports M"
    unfolding supports_def
    apply(clarify)
    apply(rule sw)
    apply(rule swap_fresh_fresh)
    apply(simp_all only: fresh_def)
    apply(auto)
    apply(metis neq0_conv)+
    done
qed

lemma Union_included_multiset:
  fixes M::"('a::fs multiset)" 
  shows "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M"
proof -
  have "(\<Union>{supp x | x. x \<in># M}) = (\<Union>{supp x | x. x \<in> set_of M})" by simp
  also have "... \<subseteq> (\<Union>x \<in> set_of M. supp x)" by auto
  also have "... = supp (set_of M)" by (simp add: subst supp_of_finite_sets)
  also have " ... \<subseteq> supp M" by (rule supp_set_of)
  finally show "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M" .
qed

lemma supp_of_multisets:
  fixes M::"('a::fs multiset)"
  shows "(supp M) = (\<Union>{supp x | x. x :# M})"
apply(rule subset_antisym)
apply(rule supp_is_subset)
apply(rule Union_supports_multiset)
apply(rule Union_finite_multiset)
apply(rule Union_included_multiset)
done

lemma multisets_supp_finite:
  fixes M::"('a::fs multiset)"
  shows "finite (supp M)"
by (simp only: supp_of_multisets Union_finite_multiset)

lemma supp_of_multiset_union:
  fixes M N::"('a::fs) multiset"
  shows "supp (M + N) = supp M \<union> supp N"
  by (auto simp add: supp_of_multisets)

lemma supp_empty_mset [simp]:
  shows "supp {#} = {}"
  unfolding supp_def
  by simp

instance multiset :: (fs) fs
  apply (default)
  apply (rule multisets_supp_finite)
  done

subsection {* Type @{typ "'a fset"} is finitely supported *}

lemma supp_fset [simp]:
  shows "supp (fset S) = supp S"
  unfolding supp_def
  by (simp add: fset_eqvt fset_cong)

lemma supp_empty_fset [simp]:
  shows "supp {||} = {}"
  unfolding supp_def
  by simp

lemma fresh_empty_fset:
  shows "a \<sharp> {||}"
unfolding fresh_def
by (simp)

lemma supp_insert_fset [simp]:
  fixes x::"'a::fs"
  and   S::"'a fset"
  shows "supp (insert_fset x S) = supp x \<union> supp S"
  apply(subst supp_fset[symmetric])
  apply(simp add: supp_of_finite_insert)
  done

lemma fresh_insert_fset:
  fixes x::"'a::fs"
  and   S::"'a fset"
  shows "a \<sharp> insert_fset x S \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> S"
  unfolding fresh_def
  by (simp)

lemma fset_finite_supp:
  fixes S::"('a::fs) fset"
  shows "finite (supp S)"
  by (induct S) (simp_all add: finite_supp)

lemma supp_union_fset:
  fixes S T::"'a::fs fset"
  shows "supp (S |\<union>| T) = supp S \<union> supp T"
by (induct S) (auto)

lemma fresh_union_fset:
  fixes S T::"'a::fs fset"
  shows "a \<sharp> S |\<union>| T \<longleftrightarrow> a \<sharp> S \<and> a \<sharp> T"
unfolding fresh_def
by (simp add: supp_union_fset)

instance fset :: (fs) fs
  apply (default)
  apply (rule fset_finite_supp)
  done


section {* Freshness and Fresh-Star *}

lemma fresh_Unit_elim: 
  shows "(a \<sharp> () \<Longrightarrow> PROP C) \<equiv> PROP C"
  by (simp add: fresh_Unit)

lemma fresh_Pair_elim: 
  shows "(a \<sharp> (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> a \<sharp> y \<Longrightarrow> PROP C)"
  by rule (simp_all add: fresh_Pair)

(* this rule needs to be added before the fresh_prodD is *)
(* added to the simplifier with mksimps                  *) 
lemma [simp]:
  shows "a \<sharp> x1 \<Longrightarrow> a \<sharp> x2 \<Longrightarrow> a \<sharp> (x1, x2)"
  by (simp add: fresh_Pair)

lemma fresh_PairD:
  shows "a \<sharp> (x, y) \<Longrightarrow> a \<sharp> x"
  and   "a \<sharp> (x, y) \<Longrightarrow> a \<sharp> y"
  by (simp_all add: fresh_Pair)

declaration {* fn _ =>
let
  val mksimps_pairs = (@{const_name Nominal2_Base.fresh}, @{thms fresh_PairD}) :: mksimps_pairs
in
  Simplifier.map_ss (fn ss => Simplifier.set_mksimps (mksimps mksimps_pairs) ss)
end
*}

text {* The fresh-star generalisation of fresh is used in strong
  induction principles. *}

definition 
  fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80)
where 
  "as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x"

lemma fresh_star_supp_conv:
  shows "supp x \<sharp>* y \<Longrightarrow> supp y \<sharp>* x"
by (auto simp add: fresh_star_def fresh_def)

lemma fresh_star_perm_set_conv:
  fixes p::"perm"
  assumes fresh: "as \<sharp>* p"
  and     fin: "finite as"
  shows "supp p \<sharp>* as"
apply(rule fresh_star_supp_conv)
apply(simp add: supp_finite_atom_set fin fresh)
done

lemma fresh_star_atom_set_conv:
  assumes fresh: "as \<sharp>* bs"
  and     fin: "finite as" "finite bs"
  shows "bs \<sharp>* as"
using fresh
unfolding fresh_star_def fresh_def
by (auto simp add: supp_finite_atom_set fin)

lemma atom_fresh_star_disjoint:
  assumes fin: "finite bs" 
  shows "as \<sharp>* bs \<longleftrightarrow> (as \<inter> bs = {})"

unfolding fresh_star_def fresh_def
by (auto simp add: supp_finite_atom_set fin)


lemma fresh_star_Pair:
  shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)" 
  by (auto simp add: fresh_star_def fresh_Pair)

lemma fresh_star_list:
  shows "as \<sharp>* (xs @ ys) \<longleftrightarrow> as \<sharp>* xs \<and> as \<sharp>* ys"
  and   "as \<sharp>* (x # xs) \<longleftrightarrow> as \<sharp>* x \<and> as \<sharp>* xs"
  and   "as \<sharp>* []"
by (auto simp add: fresh_star_def fresh_Nil fresh_Cons fresh_append)

lemma fresh_star_set:
  fixes xs::"('a::fs) list"
  shows "as \<sharp>* set xs \<longleftrightarrow> as \<sharp>* xs"
unfolding fresh_star_def
by (simp add: fresh_set)

lemma fresh_star_singleton:
  fixes a::"atom"
  shows "as \<sharp>* {a} \<longleftrightarrow> as \<sharp>* a"
  by (simp add: fresh_star_def fresh_finite_insert fresh_set_empty)

lemma fresh_star_fset:
  fixes xs::"('a::fs) list"
  shows "as \<sharp>* fset S \<longleftrightarrow> as \<sharp>* S"
by (simp add: fresh_star_def fresh_def) 

lemma fresh_star_Un:
  shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)"
  by (auto simp add: fresh_star_def)

lemma fresh_star_insert:
  shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)"
  by (auto simp add: fresh_star_def)

lemma fresh_star_Un_elim:
  "((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)"
  unfolding fresh_star_def
  apply(rule)
  apply(erule meta_mp)
  apply(auto)
  done

lemma fresh_star_insert_elim:
  "(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)"
  unfolding fresh_star_def
  by rule (simp_all add: fresh_star_def)

lemma fresh_star_empty_elim:
  "({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C"
  by (simp add: fresh_star_def)

lemma fresh_star_Unit_elim: 
  shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C"
  by (simp add: fresh_star_def fresh_Unit) 

lemma fresh_star_Pair_elim: 
  shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
  by (rule, simp_all add: fresh_star_Pair)

lemma fresh_star_zero:
  shows "as \<sharp>* (0::perm)"
  unfolding fresh_star_def
  by (simp add: fresh_zero_perm)

lemma fresh_star_plus:
  fixes p q::perm
  shows "\<lbrakk>a \<sharp>* p;  a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
  unfolding fresh_star_def
  by (simp add: fresh_plus_perm)

lemma fresh_star_permute_iff:
  shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
  unfolding fresh_star_def
  by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)

lemma fresh_star_eqvt [eqvt]:
  shows "p \<bullet> (as \<sharp>* x) \<longleftrightarrow> (p \<bullet> as) \<sharp>* (p \<bullet> x)"
unfolding fresh_star_def
by (perm_simp) (rule refl)



section {* Induction principle for permutations *}

lemma smaller_supp:
  assumes a: "a \<in> supp p"
  shows "supp ((p \<bullet> a \<rightleftharpoons> a) + p) \<subset> supp p"
proof -
  have "supp ((p \<bullet> a \<rightleftharpoons> a) + p) \<subseteq> supp p"
    unfolding supp_perm by (auto simp add: swap_atom)
  moreover
  have "a \<notin> supp ((p \<bullet> a \<rightleftharpoons> a) + p)" by (simp add: supp_perm)
  then have "supp ((p \<bullet> a \<rightleftharpoons> a) + p) \<noteq> supp p" using a by auto
  ultimately 
  show "supp ((p \<bullet> a \<rightleftharpoons> a) + p) \<subset> supp p" by auto
qed
  

lemma perm_struct_induct[consumes 1, case_names zero swap]:
  assumes S: "supp p \<subseteq> S"
  and zero: "P 0"
  and swap: "\<And>p a b. \<lbrakk>P p; supp p \<subseteq> S; a \<in> S; b \<in> S; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
  shows "P p"
proof -
  have "finite (supp p)" by (simp add: finite_supp)
  then show "P p" using S
  proof(induct A\<equiv>"supp p" arbitrary: p rule: finite_psubset_induct)
    case (psubset p)
    then have ih: "\<And>q. supp q \<subset> supp p \<Longrightarrow> P q" by auto
    have as: "supp p \<subseteq> S" by fact
    { assume "supp p = {}"
      then have "p = 0" by (simp add: supp_perm perm_eq_iff)
      then have "P p" using zero by simp
    }
    moreover
    { assume "supp p \<noteq> {}"
      then obtain a where a0: "a \<in> supp p" by blast
      then have a1: "p \<bullet> a \<in> S" "a \<in> S" "sort_of (p \<bullet> a) = sort_of a" "p \<bullet> a \<noteq> a"
        using as by (auto simp add: supp_atom supp_perm swap_atom)
      let ?q = "(p \<bullet> a \<rightleftharpoons> a) + p"
      have a2: "supp ?q \<subset> supp p" using a0 smaller_supp by simp
      then have "P ?q" using ih by simp
      moreover
      have "supp ?q \<subseteq> S" using as a2 by simp
      ultimately  have "P ((p \<bullet> a \<rightleftharpoons> a) + ?q)" using as a1 swap by simp 
      moreover 
      have "p = (p \<bullet> a \<rightleftharpoons> a) + ?q" by (simp add: perm_eq_iff)
      ultimately have "P p" by simp
    }
    ultimately show "P p" by blast
  qed
qed

lemma perm_simple_struct_induct[case_names zero swap]:
  assumes zero: "P 0"
  and     swap: "\<And>p a b. \<lbrakk>P p; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)"
  shows "P p"
by (rule_tac S="supp p" in perm_struct_induct)
   (auto intro: zero swap)

lemma perm_struct_induct2[consumes 1, case_names zero swap plus]:
  assumes S: "supp p \<subseteq> S"
  assumes zero: "P 0"
  assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b; a \<in> S; b \<in> S\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
  assumes plus: "\<And>p1 p2. \<lbrakk>P p1; P p2; supp p1 \<subseteq> S; supp p2 \<subseteq> S\<rbrakk> \<Longrightarrow> P (p1 + p2)"
  shows "P p"
using S
by (induct p rule: perm_struct_induct)
   (auto intro: zero plus swap simp add: supp_swap)

lemma perm_simple_struct_induct2[case_names zero swap plus]:
  assumes zero: "P 0"
  assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
  assumes plus: "\<And>p1 p2. \<lbrakk>P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
  shows "P p"
by (rule_tac S="supp p" in perm_struct_induct2)
   (auto intro: zero swap plus)

lemma supp_perm_singleton:
  fixes p::"perm"
  shows "supp p \<subseteq> {b} \<longleftrightarrow> p = 0"
proof -
  { assume "supp p \<subseteq> {b}"
    then have "p = 0"
      by (induct p rule: perm_struct_induct) (simp_all)
  }
  then show "supp p \<subseteq> {b} \<longleftrightarrow> p = 0" by (auto simp add: supp_zero_perm)
qed

lemma supp_perm_pair:
  fixes p::"perm"
  shows "supp p \<subseteq> {a, b} \<longleftrightarrow> p = 0 \<or> p = (b \<rightleftharpoons> a)"
proof -
  { assume "supp p \<subseteq> {a, b}"
    then have "p = 0 \<or> p = (b \<rightleftharpoons> a)"
      apply (induct p rule: perm_struct_induct) 
      apply (auto simp add: swap_cancel supp_zero_perm supp_swap)
      apply (simp add: swap_commute)
      done
  }
  then show "supp p \<subseteq> {a, b} \<longleftrightarrow> p = 0 \<or> p = (b \<rightleftharpoons> a)" 
    by (auto simp add: supp_zero_perm supp_swap split: if_splits)
qed

lemma supp_perm_eq:
  assumes "(supp x) \<sharp>* p"
  shows "p \<bullet> x = x"
proof -
  from assms have "supp p \<subseteq> {a. a \<sharp> x}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p \<bullet> x = x"
  proof (induct p rule: perm_struct_induct)
    case zero
    show "0 \<bullet> x = x" by simp
  next
    case (swap p a b)
    then have "a \<sharp> x" "b \<sharp> x" "p \<bullet> x = x" by simp_all
    then show "((a \<rightleftharpoons> b) + p) \<bullet> x = x" by (simp add: swap_fresh_fresh)
  qed
qed

text {* same lemma as above, but proved with a different induction principle *}
lemma supp_perm_eq_test:
  assumes "(supp x) \<sharp>* p"
  shows "p \<bullet> x = x"
proof -
  from assms have "supp p \<subseteq> {a. a \<sharp> x}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p \<bullet> x = x"
  proof (induct p rule: perm_struct_induct2)
    case zero
    show "0 \<bullet> x = x" by simp
  next
    case (swap a b)
    then have "a \<sharp> x" "b \<sharp> x" by simp_all
    then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh)
  next
    case (plus p1 p2)
    have "p1 \<bullet> x = x" "p2 \<bullet> x = x" by fact+
    then show "(p1 + p2) \<bullet> x = x" by simp
  qed
qed

lemma perm_supp_eq:
  assumes a: "(supp p) \<sharp>* x"
  shows "p \<bullet> x = x"
proof -
  from assms have "supp p \<subseteq> {a. a \<sharp> x}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p \<bullet> x = x"
  proof (induct p rule: perm_struct_induct2)
    case zero
    show "0 \<bullet> x = x" by simp
  next
    case (swap a b)
    then have "a \<sharp> x" "b \<sharp> x" by simp_all
    then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh)
  next
    case (plus p1 p2)
    have "p1 \<bullet> x = x" "p2 \<bullet> x = x" by fact+
    then show "(p1 + p2) \<bullet> x = x" by simp
  qed
qed




lemma supp_perm_perm_eq:
  assumes a: "\<forall>a \<in> supp x. p \<bullet> a = q \<bullet> a"
  shows "p \<bullet> x = q \<bullet> x"
proof -
  from a have "\<forall>a \<in> supp x. (-q + p) \<bullet> a = a" by simp
  then have "\<forall>a \<in> supp x. a \<notin> supp (-q + p)" 
    unfolding supp_perm by simp
  then have "supp x \<sharp>* (-q + p)"
    unfolding fresh_star_def fresh_def by simp
  then have "(-q + p) \<bullet> x = x" by (simp only: supp_perm_eq)
  then show "p \<bullet> x = q \<bullet> x"
    by (metis permute_minus_cancel(1) permute_plus)
qed

text {* disagreement set *}

definition
  dset :: "perm \<Rightarrow> perm \<Rightarrow> atom set"
where
  "dset p q = {a::atom. p \<bullet> a \<noteq> q \<bullet> a}"

lemma ds_fresh:
  assumes "dset p q \<sharp>* x"
  shows "p \<bullet> x = q \<bullet> x"
using assms
unfolding dset_def fresh_star_def fresh_def
by (auto intro: supp_perm_perm_eq)

lemma atom_set_perm_eq:
  assumes a: "as \<sharp>* p"
  shows "p \<bullet> as = as"
proof -
  from a have "supp p \<subseteq> {a. a \<notin> as}"
    unfolding supp_perm fresh_star_def fresh_def by auto
  then show "p \<bullet> as = as"
  proof (induct p rule: perm_struct_induct)
    case zero
    show "0 \<bullet> as = as" by simp
  next
    case (swap p a b)
    then have "a \<notin> as" "b \<notin> as" "p \<bullet> as = as" by simp_all
    then show "((a \<rightleftharpoons> b) + p) \<bullet> as = as" by (simp add: swap_set_not_in)
  qed
qed

section {* Avoiding of atom sets *}

text {* 
  For every set of atoms, there is another set of atoms
  avoiding a finitely supported c and there is a permutation
  which 'translates' between both sets.
*}

lemma at_set_avoiding_aux:
  fixes Xs::"atom set"
  and   As::"atom set"
  assumes b: "Xs \<subseteq> As"
  and     c: "finite As"
  shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) = (Xs \<union> (p \<bullet> Xs))"
proof -
  from b c have "finite Xs" by (rule finite_subset)
  then show ?thesis using b
  proof (induct rule: finite_subset_induct)
    case empty
    have "0 \<bullet> {} \<inter> As = {}" by simp
    moreover
    have "supp (0::perm) = {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm)
    ultimately show ?case by blast
  next
    case (insert x Xs)
    then obtain p where
      p1: "(p \<bullet> Xs) \<inter> As = {}" and 
      p2: "supp p = (Xs \<union> (p \<bullet> Xs))" by blast
    from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast
    with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast
    hence px: "p \<bullet> x = x" unfolding supp_perm by simp
    have "finite (As \<union> p \<bullet> Xs \<union> supp p)"
      using `finite As` `finite Xs`
      by (simp add: permute_set_eq_image finite_supp)
    then obtain y where "y \<notin> (As \<union> p \<bullet> Xs \<union> supp p)" "sort_of y = sort_of x"
      by (rule obtain_atom)
    hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "y \<notin> supp p" "sort_of y = sort_of x"
      by simp_all
    hence py: "p \<bullet> y = y" "x \<noteq> y" using `x \<in> As`
      by (auto simp add: supp_perm)
    let ?q = "(x \<rightleftharpoons> y) + p"
    have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)"
      unfolding insert_eqvt
      using `p \<bullet> x = x` `sort_of y = sort_of x`
      using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs`
      by (simp add: swap_atom swap_set_not_in)
    have "?q \<bullet> insert x Xs \<inter> As = {}"
      using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}`
      unfolding q by simp
    moreover
    have "supp (x \<rightleftharpoons> y) \<inter> supp p = {}" using px py `sort_of y = sort_of x`
      unfolding supp_swap by (simp add: supp_perm)
    then have "supp ?q = (supp (x \<rightleftharpoons> y) \<union> supp p)" 
      by (simp add: supp_plus_perm_eq)
    then have "supp ?q = insert x Xs \<union> ?q \<bullet> insert x Xs"
      using p2 `sort_of y = sort_of x` `x \<noteq> y` unfolding q supp_swap
      by auto
    ultimately show ?case by blast
  qed
qed

lemma at_set_avoiding:
  assumes a: "finite Xs"
  and     b: "finite (supp c)"
  obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) = (Xs \<union> (p \<bullet> Xs))"
  using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"]
  unfolding fresh_star_def fresh_def by blast

lemma at_set_avoiding1:
  assumes "finite xs"
  and     "finite (supp c)"
  shows "\<exists>p. (p \<bullet> xs) \<sharp>* c"
using assms
apply(erule_tac c="c" in at_set_avoiding)
apply(auto)
done

lemma at_set_avoiding2:
  assumes "finite xs"
  and     "finite (supp c)" "finite (supp x)"
  and     "xs \<sharp>* x"
  shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
using assms
apply(erule_tac c="(c, x)" in at_set_avoiding)
apply(simp add: supp_Pair)
apply(rule_tac x="p" in exI)
apply(simp add: fresh_star_Pair)
apply(rule fresh_star_supp_conv)
apply(auto simp add: fresh_star_def)
done

lemma at_set_avoiding3:
  assumes "finite xs"
  and     "finite (supp c)" "finite (supp x)"
  and     "xs \<sharp>* x"
  shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p \<and> supp p = xs \<union> (p \<bullet> xs)"
using assms
apply(erule_tac c="(c, x)" in at_set_avoiding)
apply(simp add: supp_Pair)
apply(rule_tac x="p" in exI)
apply(simp add: fresh_star_Pair)
apply(rule fresh_star_supp_conv)
apply(auto simp add: fresh_star_def)
done

lemma at_set_avoiding2_atom:
  assumes "finite (supp c)" "finite (supp x)"
  and     b: "a \<sharp> x"
  shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p"
proof -
  have a: "{a} \<sharp>* x" unfolding fresh_star_def by (simp add: b)
  obtain p where p1: "(p \<bullet> {a}) \<sharp>* c" and p2: "supp x \<sharp>* p"
    using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast
  have c: "(p \<bullet> a) \<sharp> c" using p1
    unfolding fresh_star_def Ball_def 
    by(erule_tac x="p \<bullet> a" in allE) (simp add: permute_set_def)
  hence "p \<bullet> a \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast
  then show "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" by blast
qed


section {* Renaming permutations *}

lemma set_renaming_perm:
  assumes b: "finite bs"
  shows "\<exists>q. (\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)"
using b
proof (induct)
  case empty
  have "(\<forall>b \<in> {}. 0 \<bullet> b = p \<bullet> b) \<and> supp (0::perm) \<subseteq> {} \<union> p \<bullet> {}"
    by (simp add: permute_set_def supp_perm)
  then show "\<exists>q. (\<forall>b \<in> {}. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> {} \<union> p \<bullet> {}" by blast
next
  case (insert a bs)
  then have " \<exists>q. (\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> p \<bullet> bs" by simp 
  then obtain q where *: "\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> bs \<union> p \<bullet> bs"
    by auto
  { assume 1: "q \<bullet> a = p \<bullet> a"
    have "\<forall>b \<in> (insert a bs). q \<bullet> b = p \<bullet> b" using 1 * by simp
    moreover 
    have "supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs" 
      using ** by (auto simp add: insert_eqvt)
    ultimately 
    have "\<exists>q. (\<forall>b \<in> insert a bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs" by blast
  }
  moreover
  { assume 2: "q \<bullet> a \<noteq> p \<bullet> a"
    def q' \<equiv> "((q \<bullet> a) \<rightleftharpoons> (p \<bullet> a)) + q"
    have "\<forall>b \<in> insert a bs. q' \<bullet> b = p \<bullet> b" using 2 * `a \<notin> bs` unfolding q'_def
      by (auto simp add: swap_atom)
    moreover 
    { have "{q \<bullet> a, p \<bullet> a} \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
	using ** 
	apply (auto simp add: supp_perm insert_eqvt)
	apply (subgoal_tac "q \<bullet> a \<in> bs \<union> p \<bullet> bs")
	apply(auto)[1]
	apply(subgoal_tac "q \<bullet> a \<in> {a. q \<bullet> a \<noteq> a}")
	apply(blast)
	apply(simp)
	done
      then have "supp (q \<bullet> a \<rightleftharpoons> p \<bullet> a) \<subseteq> insert a bs \<union> p \<bullet> insert a bs" by (simp add: supp_swap)
      moreover
      have "supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs" 
	using ** by (auto simp add: insert_eqvt)
      ultimately 
      have "supp q' \<subseteq> insert a bs \<union> p \<bullet> insert a bs" 
        unfolding q'_def using supp_plus_perm by blast
    }
    ultimately 
    have "\<exists>q. (\<forall>b \<in> insert a bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs" by blast
  }
  ultimately show "\<exists>q. (\<forall>b \<in> insert a bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
    by blast
qed

lemma set_renaming_perm2:
  shows "\<exists>q. (\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)"
proof -
  have "finite (bs \<inter> supp p)" by (simp add: finite_supp)
  then obtain q 
    where *: "\<forall>b \<in> bs \<inter> supp p. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> (bs \<inter> supp p) \<union> (p \<bullet> (bs \<inter> supp p))"
    using set_renaming_perm by blast
  from ** have "supp q \<subseteq> bs \<union> (p \<bullet> bs)" by (auto simp add: inter_eqvt)
  moreover
  have "\<forall>b \<in> bs - supp p. q \<bullet> b = p \<bullet> b" 
    apply(auto)
    apply(subgoal_tac "b \<notin> supp q")
    apply(simp add: fresh_def[symmetric])
    apply(simp add: fresh_perm)
    apply(clarify)
    apply(rotate_tac 2)
    apply(drule subsetD[OF **])
    apply(simp add: inter_eqvt supp_eqvt permute_self)
    done
  ultimately have "(\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)" using * by auto
  then show "\<exists>q. (\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)" by blast
qed
    
lemma list_renaming_perm:
  shows "\<exists>q. (\<forall>b \<in> set bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set bs \<union> (p \<bullet> set bs)"
proof (induct bs)
  case (Cons a bs)
  then have " \<exists>q. (\<forall>b \<in> set bs. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set bs \<union> p \<bullet> (set bs)"  by simp
  then obtain q where *: "\<forall>b \<in> set bs. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> set bs \<union> p \<bullet> (set bs)"
    by (blast)
  { assume 1: "a \<in> set bs"
    have "q \<bullet> a = p \<bullet> a" using * 1 by (induct bs) (auto)
    then have "\<forall>b \<in> set (a # bs). q \<bullet> b = p \<bullet> b" using * by simp 
    moreover 
    have "supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" using ** by (auto simp add: insert_eqvt)
    ultimately 
    have "\<exists>q. (\<forall>b \<in> set (a # bs). q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" by blast
  }
  moreover
  { assume 2: "a \<notin> set bs"
    def q' \<equiv> "((q \<bullet> a) \<rightleftharpoons> (p \<bullet> a)) + q"
    have "\<forall>b \<in> set (a # bs). q' \<bullet> b = p \<bullet> b" 
      unfolding q'_def using 2 * `a \<notin> set bs` by (auto simp add: swap_atom)
    moreover 
    { have "{q \<bullet> a, p \<bullet> a} \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))"
	using **
	apply (auto simp add: supp_perm insert_eqvt)
	apply (subgoal_tac "q \<bullet> a \<in> set bs \<union> p \<bullet> set bs")
	apply(auto)[1]
	apply(subgoal_tac "q \<bullet> a \<in> {a. q \<bullet> a \<noteq> a}")
	apply(blast)
	apply(simp)
	done
      then have "supp (q \<bullet> a \<rightleftharpoons> p \<bullet> a) \<subseteq> set (a # bs) \<union> p \<bullet> set (a # bs)" by (simp add: supp_swap)
      moreover
      have "supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" 
	using ** by (auto simp add: insert_eqvt)
      ultimately 
      have "supp q' \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" 
        unfolding q'_def using supp_plus_perm by blast
    }
    ultimately 
    have "\<exists>q. (\<forall>b \<in> set (a # bs).  q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" by blast
  }
  ultimately show "\<exists>q. (\<forall>b \<in> set (a # bs). q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))"
    by blast
next
 case Nil
  have "(\<forall>b \<in> set []. 0 \<bullet> b = p \<bullet> b) \<and> supp (0::perm) \<subseteq> set [] \<union> p \<bullet> set []" 
    by (simp add: supp_zero_perm)
  then show "\<exists>q. (\<forall>b \<in> set []. q \<bullet> b = p \<bullet> b) \<and> supp q \<subseteq> set [] \<union> p \<bullet> (set [])" by blast
qed


section {* Concrete Atoms Types *}

text {*
  Class @{text at_base} allows types containing multiple sorts of atoms.
  Class @{text at} only allows types with a single sort.
*}

class at_base = pt +
  fixes atom :: "'a \<Rightarrow> atom"
  assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b"
  assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)"

declare atom_eqvt[eqvt]

class at = at_base +
  assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)"

lemma sort_ineq [simp]:
  assumes "sort_of (atom a) \<noteq> sort_of (atom b)"
  shows "atom a \<noteq> atom b"
using assms by metis

lemma supp_at_base: 
  fixes a::"'a::at_base"
  shows "supp a = {atom a}"
  by (simp add: supp_atom [symmetric] supp_def atom_eqvt)

lemma fresh_at_base: 
  shows  "sort_of a \<noteq> sort_of (atom b) \<Longrightarrow> a \<sharp> b"
  and "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b"
  unfolding fresh_def 
  apply(simp_all add: supp_at_base)
  apply(metis)
  done
  
lemma fresh_atom_at_base: 
  fixes b::"'a::at_base"
  shows "a \<sharp> atom b \<longleftrightarrow> a \<sharp> b"
  by (simp add: fresh_def supp_at_base supp_atom)

lemma fresh_star_atom_at_base: 
  fixes b::"'a::at_base"
  shows "as \<sharp>* atom b \<longleftrightarrow> as \<sharp>* b"
  by (simp add: fresh_star_def fresh_atom_at_base)

lemma if_fresh_at_base [simp]:
  shows "atom a \<sharp> x \<Longrightarrow> P (if a = x then t else s) = P s"
  and   "atom a \<sharp> x \<Longrightarrow> P (if x = a then t else s) = P s"
by (simp_all add: fresh_at_base)

simproc_setup fresh_ineq ("x \<noteq> (y::'a::at_base)") = {* fn _ => fn ss => fn ctrm =>
  let
    fun first_is_neg lhs rhs [] = NONE
      | first_is_neg lhs rhs (thm::thms) =
          (case Thm.prop_of thm of
             _ $ (@{term "HOL.Not"} $ (Const ("HOL.eq", _) $ l $ r)) =>
               (if l = lhs andalso r = rhs then SOME(thm)
                else if r = lhs andalso l = rhs then SOME(thm RS @{thm not_sym})
                else NONE)
           | _ => first_is_neg lhs rhs thms)

    val simp_thms = @{thms fresh_Pair fresh_at_base atom_eq_iff}
    val prems = Simplifier.prems_of ss
      |> filter (fn thm => case Thm.prop_of thm of
           _ $ (Const (@{const_name fresh}, _) $ _ $ _) => true | _ => false)
      |> map (simplify (HOL_basic_ss addsimps simp_thms))
      |> map HOLogic.conj_elims
      |> flat
  in
    case term_of ctrm of
      @{term "HOL.Not"} $ (Const ("HOL.eq", _) $ lhs $ rhs) =>
         (case first_is_neg lhs rhs prems of
            SOME(thm) => SOME(thm RS @{thm Eq_TrueI})
          | NONE => NONE)
    | _ => NONE
  end
*}


instance at_base < fs
proof qed (simp add: supp_at_base)

lemma at_base_infinite [simp]:
  shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
proof
  obtain a :: 'a where "True" by auto
  assume "finite ?U"
  hence "finite (atom ` ?U)"
    by (rule finite_imageI)
  then obtain b where b: "b \<notin> atom ` ?U" "sort_of b = sort_of (atom a)"
    by (rule obtain_atom)
  from b(2) have "b = atom ((atom a \<rightleftharpoons> b) \<bullet> a)"
    unfolding atom_eqvt [symmetric]
    by (simp add: swap_atom)
  hence "b \<in> atom ` ?U" by simp
  with b(1) show "False" by simp
qed

lemma swap_at_base_simps [simp]:
  fixes x y::"'a::at_base"
  shows "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> x = y"
  and   "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> y = x"
  and   "atom x \<noteq> a \<Longrightarrow> atom x \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x"
  unfolding atom_eq_iff [symmetric]
  unfolding atom_eqvt [symmetric]
  by simp_all

lemma obtain_at_base:
  assumes X: "finite X"
  obtains a::"'a::at_base" where "atom a \<notin> X"
proof -
  have "inj (atom :: 'a \<Rightarrow> atom)"
    by (simp add: inj_on_def)
  with X have "finite (atom -` X :: 'a set)"
    by (rule finite_vimageI)
  with at_base_infinite have "atom -` X \<noteq> (UNIV :: 'a set)"
    by auto
  then obtain a :: 'a where "atom a \<notin> X"
    by auto
  thus ?thesis ..
qed

lemma obtain_fresh':
  assumes fin: "finite (supp x)"
  obtains a::"'a::at_base" where "atom a \<sharp> x"
using obtain_at_base[where X="supp x"]
by (auto simp add: fresh_def fin)

lemma obtain_fresh:
  fixes x::"'b::fs"
  obtains a::"'a::at_base" where "atom a \<sharp> x"
  by (rule obtain_fresh') (auto simp add: finite_supp)

lemma supp_finite_set_at_base:
  assumes a: "finite S"
  shows "supp S = atom ` S"
apply(simp add: supp_of_finite_sets[OF a])
apply(simp add: supp_at_base)
apply(auto)
done

(* FIXME 
lemma supp_cofinite_set_at_base:
  assumes a: "finite (UNIV - S)"
  shows "supp S = atom ` (UNIV - S)"
apply(rule finite_supp_unique)
*)

lemma fresh_finite_set_at_base:
  fixes a::"'a::at_base"
  assumes a: "finite S"
  shows "atom a \<sharp> S \<longleftrightarrow> a \<notin> S"
  unfolding fresh_def
  apply(simp add: supp_finite_set_at_base[OF a])
  apply(subst inj_image_mem_iff)
  apply(simp add: inj_on_def)
  apply(simp)
  done

lemma fresh_at_base_permute_iff [simp]:
  fixes a::"'a::at_base"
  shows "atom (p \<bullet> a) \<sharp> p \<bullet> x \<longleftrightarrow> atom a \<sharp> x"
  unfolding atom_eqvt[symmetric]
  by (simp add: fresh_permute_iff)


section {* Infrastructure for concrete atom types *}

definition
  flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')")
where
  "(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)"

lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0"
  unfolding flip_def by (rule swap_self)

lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)"
  unfolding flip_def by (rule swap_commute)

lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)"
  unfolding flip_def by (rule minus_swap)

lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0"
  unfolding flip_def by (rule swap_cancel)

lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x"
  unfolding permute_plus [symmetric] add_flip_cancel by simp

lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x"
  by (simp add: flip_commute)

lemma flip_eqvt [eqvt]: 
  fixes a b c::"'a::at_base"
  shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)"
  unfolding flip_def
  by (simp add: swap_eqvt atom_eqvt)

lemma flip_at_base_simps [simp]:
  shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b"
  and   "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a"
  and   "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c"
  and   "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x"
  unfolding flip_def
  unfolding atom_eq_iff [symmetric]
  unfolding atom_eqvt [symmetric]
  by simp_all

text {* the following two lemmas do not hold for at_base, 
  only for single sort atoms from at *}

lemma permute_flip_at:
  fixes a b c::"'a::at"
  shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)"
  unfolding flip_def
  apply (rule atom_eq_iff [THEN iffD1])
  apply (subst atom_eqvt [symmetric])
  apply (simp add: swap_atom)
  done

lemma flip_at_simps [simp]:
  fixes a b::"'a::at"
  shows "(a \<leftrightarrow> b) \<bullet> a = b" 
  and   "(a \<leftrightarrow> b) \<bullet> b = a"
  unfolding permute_flip_at by simp_all

lemma flip_fresh_fresh:
  fixes a b::"'a::at_base"
  assumes "atom a \<sharp> x" "atom b \<sharp> x"
  shows "(a \<leftrightarrow> b) \<bullet> x = x"
using assms
by (simp add: flip_def swap_fresh_fresh)



subsection {* Syntax for coercing at-elements to the atom-type *}

syntax
  "_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3)

translations
  "_atom_constrain a t" => "CONST atom (_constrain a t)"


subsection {* A lemma for proving instances of class @{text at}. *}

setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *}
setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *}

text {*
  New atom types are defined as subtypes of @{typ atom}.
*}

lemma exists_eq_simple_sort: 
  shows "\<exists>a. a \<in> {a. sort_of a = s}"
  by (rule_tac x="Atom s 0" in exI, simp)

lemma exists_eq_sort: 
  shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}"
  by (rule_tac x="Atom (sort_fun x) y" in exI, simp)

lemma at_base_class:
  fixes sort_fun :: "'b \<Rightarrow> atom_sort"
  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
  assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}"
  assumes atom_def: "\<And>a. atom a = Rep a"
  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
  shows "OFCLASS('a, at_base_class)"
proof
  interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type)
  have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp
  fix a b :: 'a and p p1 p2 :: perm
  show "0 \<bullet> a = a"
    unfolding permute_def by (simp add: Rep_inverse)
  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
  show "atom a = atom b \<longleftrightarrow> a = b"
    unfolding atom_def by (simp add: Rep_inject)
  show "p \<bullet> atom a = atom (p \<bullet> a)"
    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed

(*
lemma at_class:
  fixes s :: atom_sort
  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
  assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}"
  assumes atom_def: "\<And>a. atom a = Rep a"
  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
  shows "OFCLASS('a, at_class)"
proof
  interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type)
  have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
  fix a b :: 'a and p p1 p2 :: perm
  show "0 \<bullet> a = a"
    unfolding permute_def by (simp add: Rep_inverse)
  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
  show "sort_of (atom a) = sort_of (atom b)"
    unfolding atom_def by (simp add: sort_of_Rep)
  show "atom a = atom b \<longleftrightarrow> a = b"
    unfolding atom_def by (simp add: Rep_inject)
  show "p \<bullet> atom a = atom (p \<bullet> a)"
    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed
*)

lemma at_class:
  fixes s :: atom_sort
  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
  assumes type: "type_definition Rep Abs {a. sort_of a = s}"
  assumes atom_def: "\<And>a. atom a = Rep a"
  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
  shows "OFCLASS('a, at_class)"
proof
  interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
  have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def)
  fix a b :: 'a and p p1 p2 :: perm
  show "0 \<bullet> a = a"
    unfolding permute_def by (simp add: Rep_inverse)
  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
  show "sort_of (atom a) = sort_of (atom b)"
    unfolding atom_def by (simp add: sort_of_Rep)
  show "atom a = atom b \<longleftrightarrow> a = b"
    unfolding atom_def by (simp add: Rep_inject)
  show "p \<bullet> atom a = atom (p \<bullet> a)"
    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
qed

lemma at_class_sort:
  fixes s :: atom_sort
  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
  fixes a::"'a"
  assumes type: "type_definition Rep Abs {a. sort_of a = s}"
  assumes atom_def: "\<And>a. atom a = Rep a"
  shows "sort_of (atom a) = s"
  using atom_def type
  unfolding type_definition_def by simp


setup {* Sign.add_const_constraint
  (@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *}
setup {* Sign.add_const_constraint
  (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}

section {* The freshness lemma according to Andy Pitts *}

lemma freshness_lemma:
  fixes h :: "'a::at \<Rightarrow> 'b::pt"
  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
  shows  "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
proof -
  from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b"
    by (auto simp add: fresh_Pair)
  show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
  proof (intro exI allI impI)
    fix a :: 'a
    assume a3: "atom a \<sharp> h"
    show "h a = h b"
    proof (cases "a = b")
      assume "a = b"
      thus "h a = h b" by simp
    next
      assume "a \<noteq> b"
      hence "atom a \<sharp> b" by (simp add: fresh_at_base)
      with a3 have "atom a \<sharp> h b" 
        by (rule fresh_fun_app)
      with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)"
        by (rule swap_fresh_fresh)
      from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h"
        by (rule swap_fresh_fresh)
      from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp
      also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)"
        by (rule permute_fun_app_eq)
      also have "\<dots> = h a"
        using d2 by simp
      finally show "h a = h b"  by simp
    qed
  qed
qed

lemma freshness_lemma_unique:
  fixes h :: "'a::at \<Rightarrow> 'b::pt"
  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
  shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
proof (rule ex_ex1I)
  from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
    by (rule freshness_lemma)
next
  fix x y
  assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
  assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y"
  from a x y show "x = y"
    by (auto simp add: fresh_Pair)
qed

text {* packaging the freshness lemma into a function *}

definition
  fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
where
  "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"

lemma fresh_fun_apply:
  fixes h :: "'a::at \<Rightarrow> 'b::pt"
  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
  assumes b: "atom a \<sharp> h"
  shows "fresh_fun h = h a"
unfolding fresh_fun_def
proof (rule the_equality)
  show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
  proof (intro strip)
    fix a':: 'a
    assume c: "atom a' \<sharp> h"
    from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma)
    with b c show "h a' = h a" by auto
  qed
next
  fix fr :: 'b
  assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr"
  with b show "fr = h a" by auto
qed

lemma fresh_fun_apply':
  fixes h :: "'a::at \<Rightarrow> 'b::pt"
  assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
  shows "fresh_fun h = h a"
  apply (rule fresh_fun_apply)
  apply (auto simp add: fresh_Pair intro: a)
  done

lemma fresh_fun_eqvt:
  fixes h :: "'a::at \<Rightarrow> 'b::pt"
  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
  shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
  using a
  apply (clarsimp simp add: fresh_Pair)
  apply (subst fresh_fun_apply', assumption+)
  apply (drule fresh_permute_iff [where p=p, THEN iffD2])
  apply (drule fresh_permute_iff [where p=p, THEN iffD2])
  apply (simp only: atom_eqvt permute_fun_app_eq [where f=h])
  apply (erule (1) fresh_fun_apply' [symmetric])
  done

lemma fresh_fun_supports:
  fixes h :: "'a::at \<Rightarrow> 'b::pt"
  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
  shows "(supp h) supports (fresh_fun h)"
  apply (simp add: supports_def fresh_def [symmetric])
  apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
  done

notation fresh_fun (binder "FRESH " 10)

lemma FRESH_f_iff:
  fixes P :: "'a::at \<Rightarrow> 'b::pure"
  fixes f :: "'b \<Rightarrow> 'c::pure"
  assumes P: "finite (supp P)"
  shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
proof -
  obtain a::'a where "atom a \<sharp> P" using P by (rule obtain_fresh')
  show "(FRESH x. f (P x)) = f (FRESH x. P x)"
    apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
    apply (cut_tac `atom a \<sharp> P`)
    apply (simp add: fresh_conv_MOST)
    apply (elim MOST_rev_mp, rule MOST_I, clarify)
    apply (simp add: permute_fun_def permute_pure fun_eq_iff)
    apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
    apply (rule refl)
    done
qed

lemma FRESH_binop_iff:
  fixes P :: "'a::at \<Rightarrow> 'b::pure"
  fixes Q :: "'a::at \<Rightarrow> 'c::pure"
  fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure"
  assumes P: "finite (supp P)" 
  and     Q: "finite (supp Q)"
  shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
proof -
  from assms have "finite (supp (P, Q))" by (simp add: supp_Pair)
  then obtain a::'a where "atom a \<sharp> (P, Q)" by (rule obtain_fresh') 
  then have "atom a \<sharp> P" and "atom a \<sharp> Q" by (simp_all add: fresh_Pair)
  show ?thesis
    apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
    apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
    apply (simp add: fresh_conv_MOST)
    apply (elim MOST_rev_mp, rule MOST_I, clarify)
    apply (simp add: permute_fun_def permute_pure fun_eq_iff)
    apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
    apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
    apply (rule refl)
    done
qed

lemma FRESH_conj_iff:
  fixes P Q :: "'a::at \<Rightarrow> bool"
  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
  shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)"
using P Q by (rule FRESH_binop_iff)

lemma FRESH_disj_iff:
  fixes P Q :: "'a::at \<Rightarrow> bool"
  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
  shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)"
using P Q by (rule FRESH_binop_iff)


section {* Library functions for the nominal infrastructure *}

use "nominal_library.ML"


section {* Automation for creating concrete atom types *}

text {* at the moment only single-sort concrete atoms are supported *}

use "nominal_atoms.ML"


section {* automatic equivariance procedure for inductive definitions *}

use "nominal_eqvt.ML"

instantiation atom_sort :: ord begin

fun less_atom_sort where
  "less_atom_sort (Sort s1 l1) (Sort s2 []) \<longleftrightarrow> s1 < s2"
| "less_atom_sort (Sort s1 []) (Sort s2 (h # t)) \<longleftrightarrow> s1 \<le> s2"
| "less_atom_sort (Sort s1 (h1 # t1)) (Sort s2 (h2 # t2)) \<longleftrightarrow> s1 < s2 \<or> s1 \<le> s2 \<and> ((less_atom_sort h1 h2) \<or> (h1 = h2 \<and> less_atom_sort (Sort s1 t1) (Sort s2 t2)))"

definition less_eq_atom_sort where
  less_eq_atom_sort_def: "less_eq_atom_sort (x :: atom_sort) y \<longleftrightarrow> x < y \<or> x = y"

instance ..

end

lemma less_st_less: "(Sort s1 l1) < (Sort s2 l2) \<longleftrightarrow> s1 < s2 \<or> s1 \<le> s2 \<and> l1 < l2"
  by (induct l1 l2 rule: list_induct2') auto

lemma not_as_le_as: "\<not>((x :: atom_sort) < x)"
  apply (rule less_atom_sort.induct[of "\<lambda>x y. x = y \<longrightarrow> \<not>x < y" "x" "x", simplified]) ..

instance atom_sort :: linorder
proof (default, auto simp add: less_eq_atom_sort_def not_as_le_as)
  fix x y :: atom_sort
  assume x: "x < y" "y < x"
  then show False
    by (induct x y rule: less_atom_sort.induct) (case_tac l1, auto)
  with x show "x = y"
    by (induct x y rule: less_atom_sort.induct) (case_tac l1, auto)
next
  fix x y z :: atom_sort
  assume "x < y" "y < z"
  then show "x < z"
    apply (induct x z arbitrary: y rule: less_atom_sort.induct)
    apply (case_tac [!] y) apply auto
    apply (case_tac [!] list2) apply auto
    apply (case_tac l1) apply auto[2]
    done
next
  fix x y :: atom_sort
  assume x: "\<not>x < y" "y \<noteq> x"
  then show "y < x"
    apply (induct x y rule: less_atom_sort.induct)
    apply auto
    apply (case_tac [!] l1)
    apply auto
    done
qed

instantiation atom :: linorder begin

definition less_eq_atom where
  [simp]: "less_eq_atom x y \<longleftrightarrow> sort_of x < sort_of y \<or> sort_of x \<le> sort_of y \<and> nat_of x \<le> nat_of y"

definition less_atom where
  [simp]: "less_atom x y \<longleftrightarrow> sort_of x < sort_of y \<or> sort_of x \<le> sort_of y \<and> nat_of x < nat_of y"

instance apply default
  apply auto
  apply (case_tac x, case_tac y)
  apply auto
  done

end

lemma [code]:
  "gpermute p = perm_apply (dest_perm p)"
  apply transfer
  unfolding Rel_def
  by (auto, metis perm_eq_def valid_dest_perm_raw_eq(2))

instantiation perm :: equal begin

definition "equal_perm a b \<longleftrightarrow> Rep_perm a = Rep_perm b"

instance
  apply default
  unfolding equal_perm_def perm_eq_rep ..

end

(* Test: export_code swap in SML *)

end